Quantum computing topological invariants of two-dimensional quantum matter (2404.06048v3)
Abstract: Quantum algorithms provide a potential strategy for solving computational problems that are intractable by classical means. Computing the topological invariants of topological matter is one central problem in research on quantum materials, and a variety of numerical approaches for this purpose have been developed. However, the complexity of quantum many-body Hamiltonians makes calculations of topological invariants challenging for interacting systems. Here, we present two quantum circuits for calculating Chern numbers of two-dimensional quantum matter on quantum computers. Both circuits combine a gate-based adiabatic time-evolution over the discretized Brillouin zone with particular phase estimation techniques. The first algorithm uses many qubits, and we analyze it using a tensor-network simulator of quantum circuits. The second circuit uses fewer qubits, and we implement it experimentally on a quantum computer based on superconducting qubits. Our results establish a method for computing topological invariants with quantum circuits, taking a step towards characterizing interacting topological quantum matter using quantum computers.
- X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057 (2011).
- M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
- R. Moessner and J. E. Moore, Topological Phases of Matter (Cambridge University Press, 2021).
- L. Oroszlány J. Asbóth and A. Pályi, A Short Course on Topological Insulators (Springer, 2016).
- D. Xiao, M.-C. Chang, and Q. Niu, “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 1959 (2010).
- Y. Ren, Z. Qiao, and Q. Niu, “Topological phases in two-dimensional materials: a review,” Rep. Prog. Phys. 79, 066501 (2016).
- C.-Z. Chang, C.-X. Liu, and A. H. MacDonald, “Colloquium: Quantum anomalous Hall effect,” Rev. Mod. Phys. 95, 011002 (2023).
- J. Maciejko, T. L. Hughes, and S.-C. Zhang, “The Quantum Spin Hall Effect,” Annu. Rev. Condens. Matter Phys. 2, 31 (2011).
- J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Rep. Prog. Phys 75, 076501 (2012).
- M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45 (1984).
- J. Zak, “Berry’s phase for energy bands in solids,” Phys. Rev. Lett. 62, 2747 (1989).
- F. D. M. Haldane, “Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ”Parity Anomaly”,” Phys. Rev. Lett. 61, 2015 (1988).
- C. L. Kane and E. J. Mele, ‘‘Quantum Spin Hall Effect in Graphene,” Phys. Rev. Lett. 95, 226801 (2005).
- A. Yu. Kitaev, “Unpaired Majorana fermions in quantum wires,” Phys.-Usp. 44, 131 (2001).
- J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, “Non-Abelian statistics and topological quantum information processing in 1D wire networks,” Nat. Phys. 7, 412 (2011).
- C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).
- V. Lahtinen and J. Pachos, “A Short Introduction to Topological Quantum Computation,” SciPost Phys. 3, 21 (2017).
- Y. Hatsugai T. Fukui and H. Suzuki, “Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances,” J. Phys. Soc. Jpn. 74, 1674 (2005).
- T. Kariyado K. Kudo, H. Watanabe and Y. Hatsugai, “Many-Body Chern Number without Integration,” Phys. Rev. Lett. 122, 146601 (2019).
- T. Ayral, P. Besserve, D. Lacroix, and E. A. Ruiz Guzman, “Quantum computing with and for many-body physics,” (2023), arXiv:2303.04850 [quant-ph] .
- G. Catarina B. Murta and J. Fernández-Rossier, “Berry phase estimation in gate-based adiabatic quantum simulation,” Phys. Rev. A 101, 020302 (2020).
- G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, and M. D. Lukin, “Probing topological spin liquids on a programmable quantum simulator,” Science 374, 1242 (2021).
- J. K. Freericks X. Xiao and A. F. Kemper, “Determining quantum phase diagrams of topological Kitaev-inspired models on NISQ quantum hardware,” Quantum 5, 553 (2021).
- J. K. Freericks X. Xiao and A. F. Kemper, “Robust measurement of wave function topology on NISQ quantum computers,” Quantum 7, 987 (2023).
- T. Sugimoto, “Quantum-circuit algorithms for many-body topological invariant and Majorana zero mode,” (2023), arXiv:2304.13408 .
- F. Mei, Q. Guo, Y.-F. Yu, L. Xiao, S.-L. Zhu, and S. Jia, “Digital Simulation of Topological Matter on Programmable Quantum Processors,” Phys. Rev. Lett. 125, 160503 (2020).
- D. Azses, R. Haenel, Y. Naveh, R. Raussendorf, E. Sela, and E. G. Dalla Torre, “Identification of Symmetry-Protected Topological States on Noisy Quantum Computers,” Phys. Rev. Lett. 125, 120502 (2020).
- N. Regnault K. Choo, C. W. von Keyserlingk and T. Neupert, “Measurement of the Entanglement Spectrum of a Symmetry-Protected Topological State Using the IBM Quantum Computer,” Phys. Rev. Lett. 121, 086808 (2018).
- P. Roushan, C. Neill, Yu Chen, M. Kolodrubetz, C. Quintana, N. Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, A. Polkovnikov, A. N. Cleland, and J. M. Martinis, “Observation of topological transitions in interacting quantum circuits,” Nature 515, 241 (2014).
- E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin, N. Y. Yao, and I. Siddiqi, “Observing Topological Invariants Using Quantum Walks in Superconducting Circuits,” Phys. Rev. X 7, 031023 (2017).
- X.-Y. Xu, Q.-Q. Wang, W.-W. Pan, K. Sun, J.-S. Xu, G. Chen, J.-S. Tang, M. Gong, Y.-J. Han, C.-F. Li, and G.-C. Guo, “Measuring the Winding Number in a Large-Scale Chiral Quantum Walk,” Phys. Rev. Lett. 120, 260501 (2018).
- X. Zhan, L. Xiao, Z. Bian, K. Wang, X. Qiu, B. C. Sanders, W. Yi, and P. Xue, “Detecting Topological Invariants in Nonunitary Discrete-Time Quantum Walks,” Phys. Rev. Lett. 119, 130501 (2017).
- T. Shirakawa R.-Y. Sun and S. Yunoki, “Efficient variational quantum circuit structure for correlated topological phases,” (2023), arXiv:2303.17187 .
- “Technical details about helmi,” (2024a), accessed: 2024-03-06.
- A. Luongo, “Quantum algorithms for data analysis,” (2023), accessed: 2023-10-12.
- A. Yu. Kitaev, “Quantum measurements and the Abelian Stabilizer Problem,” (1995), arXiv:quant-ph/9511026 .
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- N. Marzari and D. Vanderbilt, “Maximally localized generalized Wannier functions for composite energy bands,” Phys. Rev. B 56, 12847 (1997).
- S. Coh and D. Vanderbilt, “Electric Polarization in a Chern Insulator,” Phys. Rev. Lett. 102, 107603 (2009).
- Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov, “Wanniertools: An open-source software package for novel topological materials,” Comput. Phys. Commun. 224, 405 (2018).
- R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, “Equivalent expression of ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topological invariant for band insulators using the non-Abelian Berry connection,” Phys. Rev. B 84, 075119 (2011).
- D. Gresch, G. Autès, O. V. Yazyev, M. Troyer, D. Vanderbilt, B. A. Bernevig, and A. A. Soluyanov, “Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials,” Phys. Rev. B 95, 075146 (2017).
- A. A. Soluyanov and D. Vanderbilt, “Computing topological invariants without inversion symmetry,” Phys. Rev. B 83, 235401 (2011).
- J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, H. H. Booth, and J. Tennyson, “The variational quantum eigensolver: A review of methods and best practices,” Phys. Rep. 986, 1 (2022).
- All of these values are subject to daily fluctuations and are averaged over all five qubits Hel (2024b).
- U. Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Ann. Phys. 326, 96 (2011).
- M. Niedermeier, J. L. Lado, and C. Flindt, “Tensor-Network Simulations of Noisy Quantum Computers,” (2023), arXiv:2304.01751 .
- Y. Zhou, E. M. Stoudenmire, and X. Waintal, “What Limits the Simulation of Quantum Computers?” Phys. Rev. X 10, 041038 (2020).
- E. M. Stoudenmire and X. Waintal, “Grover’s Algorithm Offers No Quantum Advantage,” (2023), arXiv:2303.11317 .
- T. Ayral, T. Louvet, Y. Zhou, C. Lambert, E. M. Stoudenmire, and X. Waintal, “Density-Matrix Renormalization Group Algorithm for Simulating Quantum Circuits with a Finite Fidelity,” PRX Quantum 4, 020304 (2023).
- D. S. Wang, C. D. Hill, and L. C. L. Hollenberg, “Simulations of Shor’s algorithm using matrix product states,” Quant. Inf. Process. 16 (2017).
- A. Dang, C. D. Hill, and L. C. L. Hollenberg, “Optimising Matrix Product State Simulations of Shor’s Algorithm,” Quantum 3, 116 (2019).
- K. J. Woolfe, C. D. Hill, and L. C. L. Hollenberg, “Scaling and efficient classical simulation of the quantum Fourier transform,” Quant. Inf. Comput. 17, 1 (2017).
- M. Fishman, S. R. White, and E. M. Stoudenmire, “The ITensor Software Library for Tensor Network Calculations,” SciPost Phys. Codebases , 4 (2022).
- M. Niedermeier, “Quantunity,” (2024), accessed: 2023-03-26.
- “Helmi commercial documentation,” (2024b), accessed: 2024-03-19.