Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

Quantum computing topological invariants of two-dimensional quantum matter (2404.06048v3)

Published 9 Apr 2024 in quant-ph, cond-mat.mes-hall, and cond-mat.str-el

Abstract: Quantum algorithms provide a potential strategy for solving computational problems that are intractable by classical means. Computing the topological invariants of topological matter is one central problem in research on quantum materials, and a variety of numerical approaches for this purpose have been developed. However, the complexity of quantum many-body Hamiltonians makes calculations of topological invariants challenging for interacting systems. Here, we present two quantum circuits for calculating Chern numbers of two-dimensional quantum matter on quantum computers. Both circuits combine a gate-based adiabatic time-evolution over the discretized Brillouin zone with particular phase estimation techniques. The first algorithm uses many qubits, and we analyze it using a tensor-network simulator of quantum circuits. The second circuit uses fewer qubits, and we implement it experimentally on a quantum computer based on superconducting qubits. Our results establish a method for computing topological invariants with quantum circuits, taking a step towards characterizing interacting topological quantum matter using quantum computers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057 (2011).
  2. M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
  3. R. Moessner and J. E. Moore, Topological Phases of Matter (Cambridge University Press, 2021).
  4. L. Oroszlány J. Asbóth and A. Pályi, A Short Course on Topological Insulators (Springer, 2016).
  5. D. Xiao, M.-C. Chang,  and Q. Niu, “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 1959 (2010).
  6. Y. Ren, Z. Qiao,  and Q. Niu, “Topological phases in two-dimensional materials: a review,” Rep. Prog. Phys. 79, 066501 (2016).
  7. C.-Z. Chang, C.-X. Liu,  and A. H. MacDonald, “Colloquium: Quantum anomalous Hall effect,” Rev. Mod. Phys. 95, 011002 (2023).
  8. J. Maciejko, T. L. Hughes,  and S.-C. Zhang, “The Quantum Spin Hall Effect,” Annu. Rev. Condens. Matter Phys. 2, 31 (2011).
  9. J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Rep. Prog. Phys 75, 076501 (2012).
  10. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45 (1984).
  11. J. Zak, “Berry’s phase for energy bands in solids,” Phys. Rev. Lett. 62, 2747 (1989).
  12. F. D. M. Haldane, “Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ”Parity Anomaly”,” Phys. Rev. Lett. 61, 2015 (1988).
  13. C. L. Kane and E. J. Mele, ‘‘Quantum Spin Hall Effect in Graphene,” Phys. Rev. Lett. 95, 226801 (2005).
  14. A. Yu. Kitaev, “Unpaired Majorana fermions in quantum wires,” Phys.-Usp. 44, 131 (2001).
  15. J. Alicea, Y. Oreg, G. Refael, F. von Oppen,  and M. P. A. Fisher, “Non-Abelian statistics and topological quantum information processing in 1D wire networks,” Nat. Phys. 7, 412 (2011).
  16. C. Nayak, S. H. Simon, A. Stern, M. Freedman,  and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).
  17. V. Lahtinen and J. Pachos, “A Short Introduction to Topological Quantum Computation,” SciPost Phys. 3, 21 (2017).
  18. Y. Hatsugai T. Fukui and H. Suzuki, “Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances,” J. Phys. Soc. Jpn. 74, 1674 (2005).
  19. T. Kariyado K. Kudo, H. Watanabe and Y. Hatsugai, “Many-Body Chern Number without Integration,” Phys. Rev. Lett. 122, 146601 (2019).
  20. T. Ayral, P. Besserve, D. Lacroix,  and E. A. Ruiz Guzman, “Quantum computing with and for many-body physics,”  (2023), arXiv:2303.04850 [quant-ph] .
  21. G. Catarina B. Murta and J. Fernández-Rossier, “Berry phase estimation in gate-based adiabatic quantum simulation,” Phys. Rev. A 101, 020302 (2020).
  22. G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić,  and M. D. Lukin, “Probing topological spin liquids on a programmable quantum simulator,” Science 374, 1242 (2021).
  23. J. K. Freericks X. Xiao and A. F. Kemper, “Determining quantum phase diagrams of topological Kitaev-inspired models on NISQ quantum hardware,” Quantum 5, 553 (2021).
  24. J. K. Freericks X. Xiao and A. F. Kemper, “Robust measurement of wave function topology on NISQ quantum computers,” Quantum 7, 987 (2023).
  25. T. Sugimoto, “Quantum-circuit algorithms for many-body topological invariant and Majorana zero mode,”  (2023), arXiv:2304.13408 .
  26. F. Mei, Q. Guo, Y.-F. Yu, L. Xiao, S.-L. Zhu,  and S. Jia, “Digital Simulation of Topological Matter on Programmable Quantum Processors,” Phys. Rev. Lett. 125, 160503 (2020).
  27. D. Azses, R. Haenel, Y. Naveh, R. Raussendorf, E. Sela,  and E. G. Dalla Torre, “Identification of Symmetry-Protected Topological States on Noisy Quantum Computers,” Phys. Rev. Lett. 125, 120502 (2020).
  28. N. Regnault K. Choo, C. W. von Keyserlingk and T. Neupert, “Measurement of the Entanglement Spectrum of a Symmetry-Protected Topological State Using the IBM Quantum Computer,” Phys. Rev. Lett. 121, 086808 (2018).
  29. P. Roushan, C. Neill, Yu Chen, M. Kolodrubetz, C. Quintana, N. Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, A. Polkovnikov, A. N. Cleland,  and J. M. Martinis, “Observation of topological transitions in interacting quantum circuits,” Nature 515, 241 (2014).
  30. E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin, N. Y. Yao,  and I. Siddiqi, “Observing Topological Invariants Using Quantum Walks in Superconducting Circuits,” Phys. Rev. X 7, 031023 (2017).
  31. X.-Y. Xu, Q.-Q. Wang, W.-W. Pan, K. Sun, J.-S. Xu, G. Chen, J.-S. Tang, M. Gong, Y.-J. Han, C.-F. Li,  and G.-C. Guo, “Measuring the Winding Number in a Large-Scale Chiral Quantum Walk,” Phys. Rev. Lett. 120, 260501 (2018).
  32. X. Zhan, L. Xiao, Z. Bian, K. Wang, X. Qiu, B. C. Sanders, W. Yi,  and P. Xue, “Detecting Topological Invariants in Nonunitary Discrete-Time Quantum Walks,” Phys. Rev. Lett. 119, 130501 (2017).
  33. T. Shirakawa R.-Y. Sun and S. Yunoki, “Efficient variational quantum circuit structure for correlated topological phases,”  (2023), arXiv:2303.17187 .
  34. “Technical details about helmi,”  (2024a), accessed: 2024-03-06.
  35. A. Luongo, “Quantum algorithms for data analysis,”  (2023), accessed: 2023-10-12.
  36. A. Yu. Kitaev, “Quantum measurements and the Abelian Stabilizer Problem,”  (1995), arXiv:quant-ph/9511026 .
  37. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  38. N. Marzari and D. Vanderbilt, “Maximally localized generalized Wannier functions for composite energy bands,” Phys. Rev. B 56, 12847 (1997).
  39. S. Coh and D. Vanderbilt, “Electric Polarization in a Chern Insulator,” Phys. Rev. Lett. 102, 107603 (2009).
  40. Q. Wu, S. Zhang, H.-F. Song, M. Troyer,  and A. A. Soluyanov, “Wanniertools: An open-source software package for novel topological materials,” Comput. Phys. Commun. 224, 405 (2018).
  41. R. Yu, X. L. Qi, A. Bernevig, Z. Fang,  and X. Dai, “Equivalent expression of ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topological invariant for band insulators using the non-Abelian Berry connection,” Phys. Rev. B 84, 075119 (2011).
  42. D. Gresch, G. Autès, O. V. Yazyev, M. Troyer, D. Vanderbilt, B. A. Bernevig,  and A. A. Soluyanov, “Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials,” Phys. Rev. B 95, 075146 (2017).
  43. A. A. Soluyanov and D. Vanderbilt, “Computing topological invariants without inversion symmetry,” Phys. Rev. B 83, 235401 (2011).
  44. J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, H. H. Booth,  and J. Tennyson, “The variational quantum eigensolver: A review of methods and best practices,” Phys. Rep. 986, 1 (2022).
  45. All of these values are subject to daily fluctuations and are averaged over all five qubits Hel (2024b).
  46. U. Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Ann. Phys. 326, 96 (2011).
  47. M. Niedermeier, J. L. Lado,  and C. Flindt, “Tensor-Network Simulations of Noisy Quantum Computers,”  (2023), arXiv:2304.01751 .
  48. Y. Zhou, E. M. Stoudenmire,  and X. Waintal, “What Limits the Simulation of Quantum Computers?” Phys. Rev. X 10, 041038 (2020).
  49. E. M. Stoudenmire and X. Waintal, “Grover’s Algorithm Offers No Quantum Advantage,”  (2023), arXiv:2303.11317 .
  50. T. Ayral, T. Louvet, Y. Zhou, C. Lambert, E. M. Stoudenmire,  and X. Waintal, “Density-Matrix Renormalization Group Algorithm for Simulating Quantum Circuits with a Finite Fidelity,” PRX Quantum 4, 020304 (2023).
  51. D. S. Wang, C. D. Hill,  and L. C. L. Hollenberg, “Simulations of Shor’s algorithm using matrix product states,” Quant. Inf. Process. 16 (2017).
  52. A. Dang, C. D. Hill,  and L. C. L. Hollenberg, “Optimising Matrix Product State Simulations of Shor’s Algorithm,” Quantum 3, 116 (2019).
  53. K. J. Woolfe, C. D. Hill,  and L. C. L. Hollenberg, “Scaling and efficient classical simulation of the quantum Fourier transform,” Quant. Inf. Comput. 17, 1 (2017).
  54. M. Fishman, S. R. White,  and E. M. Stoudenmire, “The ITensor Software Library for Tensor Network Calculations,” SciPost Phys. Codebases , 4 (2022).
  55. M. Niedermeier, “Quantunity,”  (2024), accessed: 2023-03-26.
  56. “Helmi commercial documentation,”  (2024b), accessed: 2024-03-19.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.