Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ClusterRadar: an Interactive Web-Tool for the Multi-Method Exploration of Spatial Clusters Over Time (2404.05897v1)

Published 8 Apr 2024 in cs.HC

Abstract: Spatial cluster analysis, the detection of localized patterns of similarity in geospatial data, has a wide-range of applications for scientific discovery and practical decision making. One way to detect spatial clusters is by using local indicators of spatial association, such as Local Moran's I or Getis-Ord Gi*. However, different indicators tend to produce substantially different results due to their distinct operational characteristics. Choosing a suitable method or comparing results from multiple methods is a complex task. Furthermore, spatial clusters are dynamic and it is often useful to track their evolution over time, which adds an additional layer of complexity. ClusterRadar is a web-tool designed to address these analytical challenges. The tool allows users to easily perform spatial clustering and analyze the results in an interactive environment, uniquely prioritizing temporal analysis and the comparison of multiple methods. The tool's interactive dashboard presents several visualizations, each offering a distinct perspective of the temporal and methodological aspects of the spatial clustering results. ClusterRadar has several features designed to maximize its utility to a broad user-base, including support for various geospatial formats, and a fully in-browser execution environment to preserve the privacy of sensitive data. Feedback from a varied set of researchers suggests ClusterRadar's potential for enhancing the temporal analysis of spatial clusters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. Geospatial network analysis for healthcare facilities accessibility in semi-urban areas. In 2018 IEEE 14th international colloquium on signal processing & its applications (CSPA), pp. 255–260. IEEE, 2018.
  2. A. Abdulhafedh. A Novel Hybrid Method for Measuring the Spatial Autocorrelation of Vehicular Crashes: Combining Moran’s Index and Getis-Ord G* Statistic. Open Journal of Civil Engineering, 07(02):208–221, 2017. doi: 10 . 4236/ojce . 2017 . 72013
  3. Applications of GIS and geospatial analyses in COVID-19 research: A systematic review. F1000Research, 9, 2020. doi: 10 . 12688/f1000research . 27544 . 2
  4. Spatial clusters of breast cancer mortality and incidence in the contiguous USA: 2000–2014. Journal of General Internal Medicine, 34:412–419, 2019. doi: 10 . 1007/s11606-018-4824-9
  5. Geovisual analytics for spatial decision support: Setting the research agenda. International journal of geographical information science, 21(8):839–857, 2007. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  6. Exploratory spatio-temporal visualization: an analytical review. Journal of Visual Languages & Computing, 14(6):503–541, 2003. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  7. Spatiotemporal clustering: a review. Artificial Intelligence Review, 53:2381–2423, 2020. doi: 10 . 1007/s10462-019-09736-1
  8. L. Anselin. Local indicators of spatial association—LISA. Geographical analysis, 27(2):93–115, 1995.
  9. L. Anselin. A local indicator of multivariate spatial association: extending Geary’s C. Geographical Analysis, 51(2):133–150, 2019. doi: 10 . 1111/gean . 12164
  10. GeoDa: an introduction to spatial data analysis. In Handbook of applied spatial analysis: Software tools, methods and applications, pp. 73–89. Springer, 2009. doi: 10 . 1007/978-3-642-03647-7_5
  11. A review of spatial methods in epidemiology, 2000–2010. Annual review of public health, 33:107–122, 2012. doi: 10 . 1146/annurev-publhealth-031811-124655
  12. S. Banerjee. Spatial data analysis. Annual review of public health, 37:47–60, 2016. doi: 10 . 1146/annurev-publhealth-032315-021711
  13. Introducing the FAIR Principles for research software. Scientific Data, 9(1):622, 2022. doi: 10 . 1038/s41597-022-01710-x
  14. The spdep package. Comprehensive R Archive Network, Version, pp. 05–83, 2005.
  15. Comparing implementations of global and local indicators of spatial association. Test, 27(3):716–748, 2018. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  16. R. Block. Software review: scanning for clusters in space and time: a tutorial review of SatScan. Social Science Computer Review, 25(2):272–278, 2007. doi: 10 . 1177/0894439307298562
  17. Mapping mortality: Evaluating color schemes for choropleth maps. Annals of the Association of American Geographers, 87(3):411–438, 1997. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  18. M. M. Brooks. The advantages of comparative LISA techniques in spatial inequality research: Evidence from poverty change in the united states. Spatial Demography, 7(2):167–193, 2019. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  19. A. Brychtová. Exploring the influence of colour distance and legend position on choropleth maps readability. Modern trends in cartography: Selected papers of CARTOCON 2014, pp. 303–314, 2015. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  20. J. W. Crampton. Interactivity types in geographic visualization. Cartography and geographic information science, 29(2):85–98, 2002. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  21. W. Cui. Visual analytics: A comprehensive overview. IEEE access, 7:81555–81573, 2019. doi: 10 . 1109/ACCESS . 2019 . 2923736
  22. Visualizing large-scale spatial time series with GeoChron. IEEE Transactions on Visualization and Computer Graphics, 2023. doi: 10 . 1109/TVCG . 2023 . 3327162
  23. Measuring the inequalities in healthcare resource in facility and workforce: A longitudinal study in China. Frontiers in Public Health, 11:1074417, 2023. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  24. S. Erdogan. Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey. Journal of safety research, 40(5):341–351, 2009. doi: 10 . 1016/j . jsr . 2009 . 07 . 006
  25. Developing a geospatial framework for severe occupational injuries using Moran’s I and Getis-Ord Gi* statistics for southeastern United States. Natural Hazards Review, 23(3):04022020, 2022.
  26. A geo-dashboard concept for the interactively linked visualization of provenance and data quality for geospatial datasets. AGILE: GIScience Series, 2:25, 2021. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  27. Moving toward findable, accessible, interoperable, reusable practices in epidemiologic research. American journal of epidemiology, 192(6):995–1005, 2023. doi: 10 . 1093/aje/kwad040
  28. R. C. Geary. The contiguity ratio and statistical mapping. The incorporated statistician, 5(3):115–146, 1954. doi: 10 . 2307/2986645
  29. A. Gelman and A. Vehtari. What are the most important statistical ideas of the past 50 years? Journal of the American Statistical Association, 116(536):2087–2097, 2021. doi: 10 . 1080/01621459 . 2021 . 1938081
  30. A. Getis. Spatial autocorrelation. In Handbook of applied spatial analysis: Software tools, methods and applications, pp. 255–278. Springer, 2009. doi: 10 . 1007/978-3-642-03647-7_14
  31. A. Getis and J. K. Ord. The analysis of spatial association by use of distance statistics. Geographical analysis, 24(3):189–206, 1992. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  32. Spatial clustering overview and comparison: Accuracy, sensitivity, and computational expense. Annals of the Association of American Geographers, 104(6):1134–1156, 2014. doi: 10 . 1080/00045608 . 2014 . 958389
  33. Alcohol mortality: a comparison of spatial clustering methods. Social Science & Medicine, 55(5):791–802, 2002. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  34. Spatial clustering patterns of child weight status in a southeastern US county. Applied geography, 99:12–21, 2018. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  35. Local clustering in breast, lung and colorectal cancer in Long Island, New York. International Journal of Health Geographics, 2:1–12, 2003.
  36. Effective dashboard design. Cutter IT journal, 26(1):17–24, 2013.
  37. An introductory framework for choosing spatiotemporal analytical tools in population-level eco-epidemiological research. Frontiers in Veterinary Science, 7:339, 2020. doi: 10 . 3389/fvets . 2020 . 00339
  38. Comparing geospatial clustering methods to study spatial patterns of lung cancer rates in urban areas: A case study in Mashhad, Iran. GeoJournal, 88(2):1659–1669, 2023. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  39. Spatio-temporal clustering. Springer, 2010. doi: 10 . 1007/978-0-387-09823-4_44
  40. Exploring the spatial patterns of vegetation fragmentation using local spatial autocorrelation indices. Journal of Applied Remote Sensing, 13(2):024523–024523, 2019. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  41. M. Kulldorff. A spatial scan statistic. Communications in Statistics-Theory and methods, 26(6):1481–1496, 1997. doi: 10 . 1080/03610929708831995
  42. M. Kulldorff and N. Nagarwalla. Spatial disease clusters: detection and inference. Statistics in medicine, 14(8):799–810, 1995. doi: 10 . 1002/sim . 4780140809
  43. J. Lee and S. Li. Extending Moran’s index for measuring spatiotemporal clustering of geographic events. Geographical Analysis, 49(1):36–57, 2017. doi: 10 . 1111/gean . 12106
  44. N. Levine. The CrimeStat program: Characteristics, use and audience. Geographical Analysis. Forthcoming, 2004.
  45. Geoda web: enhancing web-based mapping with spatial analytics. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–4, 2015. doi: 10 . 1145/2820783 . 2820792
  46. Lung cancer mortality among women in xuan wei, china: a comparison of spatial clustering detection methods. Asia Pacific Journal of Public Health, 27(2):NP392–NP401, 2015. doi: 10 . 1177/1010539512444778
  47. Y. Lin. An integrative study using spatial statistics and racial/ethnic composition to measure racial/ethnic residential segregation at varying scales. Population Change and Public Policy, pp. 405–432, 2020. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  48. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, northeast of Brazil. International Journal of Climatology, 34(13):3546–3558, 2014. doi: 10 . 1002/joc . 3926
  49. G. Marzi. On the nature, origins and outcomes of over featuring in the new product development process. Journal of engineering and technology management, 64:101685, 2022. doi: 10 . 1016/j . jengtecman . 2022 . 101685
  50. L. McNabb and R. S. Laramee. Multivariate maps—a glyph-placement algorithm to support multivariate geospatial visualization. Information, 10(10):302, 2019.
  51. H. J. Miller. Tobler’s first law and spatial analysis. Annals of the association of American geographers, 94(2):284–289, 2004. doi: 10 . 1111/j . 1467-8306 . 2004 . 09402005 . x
  52. P. Moraga and F. Montes. Detection of spatial disease clusters with LISA functions. Statistics in medicine, 30(10):1057–1071, 2011. doi: 10 . 1002/sim . 4160
  53. P. A. Moran. Notes on continuous stochastic phenomena. Biometrika, 37(1/2):17–23, 1950. doi: 10 . 2307/2332142
  54. N. Moyroud and F. Portet. Introduction to QGIS. QGIS and generic tools, 1:1–17, 2018. doi: 10 . 1002/9781119457091 . ch1
  55. Methods used in the spatial and spatiotemporal analysis of COVID-19 epidemiology: a systematic review. International Journal of Environmental Research and Public Health, 19(14):8267, 2022. doi: 10 . 3390/ijerph19148267
  56. T. Opach and J. K. Rød. Do choropleth maps linked with parallel coordinates facilitate an understanding of multivariate spatial characteristics? Cartography and Geographic Information Science, 41(5):413–429, 2014. doi: 10 . 1080/15230406 . 2014 . 953585
  57. J. K. Ord and A. Getis. Local spatial autocorrelation statistics: distributional issues and an application. Geographical analysis, 27(4):286–306, 1995. doi: 10 . 1111/j . 1538-4632 . 1995 . tb00912 . x
  58. Understanding data use and preference of data visualization for public health professionals: A qualitative study. Public Health Nursing, 38(4):531–541, 2021. doi: 10 . 1111/phn . 12863
  59. A comparison of visualizations for identifying correlation over space and time. IEEE transactions on visualization and computer graphics, 26(1):375–385, 2019.
  60. R. W. Platt. Invited commentary: the importance of descriptive epidemiology. American Journal of Epidemiology, 191(12):2071–2072, 2022. doi: 10 . 1093/aje/kwac153
  61. Deploying geospatial visualization dashboards to combat the socioeconomic impacts of COVID-19. Environment and Planning B: Urban Analytics and City Science, 50(5):1262–1279, 2023. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  62. M. Quick and J. Law. Exploring hotspots of drug offences in Toronto: A comparison of four local spatial cluster detection methods. Canadian journal of criminology and criminal justice, 55(2):215–238, 2013. doi: 10 . 3138/cjccj . 2012 . E13
  63. S. J. Rey and L. Anselin. PySAL: A python library of spatial analytical methods. In Handbook of applied spatial analysis: Software tools, methods and applications, pp. 175–193. Springer, 2009. doi: 10 . 1007/978-3-642-03647-7_11
  64. B. D. Ripley. Spatial statistics. John Wiley & Sons, 2005. doi: 10 . 1002/0471725218
  65. Spatial autocorrelation of cancer in Western Europe. European Journal of Epidemiology, 15:15–22, 1999.
  66. R. E. Roth. Interactivity and cartography: A contemporary perspective on user interface and user experience design from geospatial professionals. Cartographica: The International Journal for Geographic Information and Geovisualization, 50(2):94–115, 2015. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  67. Interactive and multivariate choropleth maps with D3. Cartographic Perspectives, (78):57–76, 2014. doi: 10 . 14714/CP78 . 1278
  68. Temporal variations and spatial clusters of dengue in thailand: Longitudinal study before and during the coronavirus disease (covid-19) pandemic. Tropical medicine and infectious disease, 7(8):171, 2022. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  69. H. Schumann and C. Tominski. Analytical, visual and interactive concepts for geo-visual analytics. Journal of Visual Languages & Computing, 22(4):257–267, 2011. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  70. Spatial statistics in arcgis. In Handbook of applied spatial analysis: Software tools, methods and applications, pp. 27–41. Springer, 2009. doi: 10 . 1007/978-3-642-03647-7_2
  71. Z. Shi and L. S. Pun-Cheng. Spatiotemporal data clustering: A survey of methods. ISPRS international journal of geo-information, 8(3):112, 2019. doi: 10 . 3390/ijgi8030112
  72. Gridded glyphmaps for supporting spatial COVID-19 modelling. In 2023 IEEE Visualization and Visual Analytics (VIS), pp. 1–5. IEEE, 2023. doi: 10 . 1109/VIS54172 . 2023 . 00009
  73. Geospatial dashboards for mapping and tracking of novel coronavirus pandemic. In Proc. Int. Conf. Ind. Eng. Oper. Manag, vol. 59, pp. 2336–2348, 2020. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  74. R. Tao and Y. Chen. Applying local indicators of spatial association to analyze longitudinal data: The absolute perspective. Geographical Analysis, 55(2):225–238, 2023. doi: 10 . 1111/gean . 12323
  75. Systematic review of geospatial approaches to breast cancer epidemiology. Geospatial Approaches to Energy Balance and Breast Cancer, pp. 141–160, 2019. doi: 10 . 1111/j . 1538-4632 . 1992 . tb00261 . x
  76. W. R. Tobler. A computer movie simulating urban growth in the Detroit region. Economic geography, 46(sup1):234–240, 1970. doi: 10 . 2307/143141
  77. D. J. Unwin. GIS, spatial analysis and spatial statistics. Progress in Human Geography, 20(4):540–551, 1996. doi: 10 . 1177/030913259602000408
  78. A multiscale geospatial dataset and an interactive visualization dashboard for computational epidemiology and open scientific research. IEEE computer graphics and applications, 43(1):39–52, 2022. doi: 10 . 1109/MCG . 2022 . 3230444
  79. Spatial clustering algorithms-an overview. Asian Journal of Computer Science and Information Technology, 3(1):1–8, 2013.
  80. J. R. Weeks. The role of spatial analysis in demographic research. Spatially integrated social science, pp. 381–399, 2004. doi: 10 . 1093/oso/9780195152708 . 003 . 0019
  81. A review of geospatial content in IEEE visualization publications. In 2020 IEEE Visualization Conference (VIS), pp. 51–55. IEEE, 2020. doi: 10 . 1109/VIS47514 . 2020 . 00017
  82. Next generation of GIS: must be easy. Annals of GIS, 27(1):71–86, 2021. doi: 10 . 1080/19475683 . 2020 . 1766563
  83. Analyzing spatial clustering and the spatiotemporal nature and trends of HIV/AIDS prevalence using GIS: the case of Malawi, 1994-2010. BMC infectious diseases, 14:1–21, 2014. doi: 10 . 1186/1471-2334-14-285

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets