Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GBEC: Geometry-Based Hand-Eye Calibration (2404.05884v1)

Published 8 Apr 2024 in cs.RO

Abstract: Hand-eye calibration is the problem of solving the transformation from the end-effector of a robot to the sensor attached to it. Commonly employed techniques, such as AXXB or AXZB formulations, rely on regression methods that require collecting pose data from different robot configurations, which can produce low accuracy and repeatability. However, the derived transformation should solely depend on the geometry of the end-effector and the sensor attachment. We propose Geometry-Based End-Effector Calibration (GBEC) that enhances the repeatability and accuracy of the derived transformation compared to traditional hand-eye calibrations. To demonstrate improvements, we apply the approach to two different robot-assisted procedures: Transcranial Magnetic Stimulation (TMS) and femoroplasty. We also discuss the generalizability of GBEC for camera-in-hand and marker-in-hand sensor mounting methods. In the experiments, we perform GBEC between the robot end-effector and an optical tracker's rigid body marker attached to the TMS coil or femoroplasty drill guide. Previous research documents low repeatability and accuracy of the conventional methods for robot-assisted TMS hand-eye calibration. When compared to some existing methods, the proposed method relies solely on the geometry of the flange and the pose of the rigid-body marker, making it independent of workspace constraints or robot accuracy, without sacrificing the orthogonality of the rotation matrix. Our results validate the accuracy and applicability of the approach, providing a new and generalizable methodology for obtaining the transformation from the end-effector to a sensor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. M. K. Ackerman and G. S. Chirikjian, “A probabilistic solution to the ax= xb problem: Sensor calibration without correspondence,” in Geometric Science of Information: First International Conference, GSI 2013, Paris, France, August 28-30, 2013. Proceedings.   Springer, 2013, pp. 693–701.
  2. D. Condurache and I.-A. Ciureanu, “A novel solution for ax=yb sensor calibration problem using dual lie algebra,” in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT).   IEEE, 2019, pp. 302–307.
  3. J. Heller, D. Henrion, and T. Pajdla, “Hand-eye and robot-world calibration by global polynomial optimization,” in 2014 IEEE international conference on robotics and automation (ICRA).   IEEE, 2014, pp. 3157–3164.
  4. J.-C. Hsiao, K. Shivam, I.-F. Lu, and T.-Y. Kam, “Positioning accuracy improvement of industrial robots considering configuration and payload effects via a hybrid calibration approach,” IEEE Access, vol. 8, pp. 228 992–229 005, 2020.
  5. H. Li, Q. Ma, T. Wang, and G. S. Chirikjian, “Simultaneous hand-eye and robot-world calibration by solving the a⁢x=y⁢b𝑎𝑥𝑦𝑏ax=ybitalic_a italic_x = italic_y italic_b problem without correspondence,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 145–152, 2015.
  6. Q. Ma, H. Li, and G. S. Chirikjian, “New probabilistic approaches to the ax= xb hand-eye calibration without correspondence,” in 2016 IEEE international conference on robotics and automation (ICRA).   IEEE, 2016, pp. 4365–4371.
  7. Y. Lu, J. Zhang, L. Yin, J. Luo, W. Dai, and S. Qin, “Error analysis and accuracy optimization for the hand-eye calibration of line structured light,” in Journal of Physics: Conference Series, vol. 2483, no. 1.   IOP Publishing, 2023, p. 012063.
  8. J. Brookshire and S. Teller, “Articulated pose estimation using tangent space approximations,” The International Journal of Robotics Research, vol. 35, no. 1-3, pp. 5–29, 2016.
  9. I. Enebuse, M. Foo, B. S. K. K. Ibrahim, H. Ahmed, F. Supmak, and O. S. Eyobu, “A comparative review of hand-eye calibration techniques for vision guided robots,” IEEE Access, vol. 9, pp. 113 143–113 155, 2021.
  10. I. Enebuse, B. K. K. Ibrahim, M. Foo, R. S. Matharu, and H. Ahmed, “Accuracy evaluation of hand-eye calibration techniques for vision-guided robots,” Plos one, vol. 17, no. 10, p. e0273261, 2022.
  11. S. Gwak, J. Kim, and F. C. Park, “Numerical optimization on the euclidean group with applications to camera calibration,” IEEE Transactions on Robotics and Automation, vol. 19, no. 1, pp. 65–74, 2003.
  12. Z. Zhang, L. Zhang, and G.-Z. Yang, “A computationally efficient method for hand–eye calibration,” International journal of computer assisted radiology and surgery, vol. 12, pp. 1775–1787, 2017.
  13. Z. Zhao, “Simultaneous robot-world and hand-eye calibration by the alternative linear programming,” Pattern Recognition Letters, vol. 127, pp. 174–180, 2019.
  14. F. Zhong, Z. Wang, W. Chen, K. He, Y. Wang, and Y.-H. Liu, “Hand-eye calibration of surgical instrument for robotic surgery using interactive manipulation,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1540–1547, 2020.
  15. M. Zhou, M. Hamad, J. Weiss, A. Eslami, K. Huang, M. Maier, C. P. Lohmann, N. Navab, A. Knoll, and M. A. Nasseri, “Towards robotic eye surgery: Marker-free, online hand-eye calibration using optical coherence tomography images,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3944–3951, 2018.
  16. L. Richter, F. Ernst, A. Schlaefer, and A. Schweikard, “Robust real-time robot–world calibration for robotized transcranial magnetic stimulation,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 7, no. 4, pp. 414–422, 2011.
  17. F. Ernst, L. Richter, L. Matthäus, V. Martens, R. Bruder, A. Schlaefer, and A. Schweikard, “Non-orthogonal tool/flange and robot/world calibration,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 8, no. 4, pp. 407–420, 2012.
  18. L. Richter, G. Neumann, S. Oung, A. Schweikard, and P. Trillenberg, “Optimal coil orientation for transcranial magnetic stimulation,” PloS one, vol. 8, no. 4, p. e60358, 2013.
  19. A. Noccaro, A. Mioli, M. D’Alonzo, M. Pinardi, G. Di Pino, and D. Formica, “Development and validation of a novel calibration methodology and control approach for robot-aided transcranial magnetic stimulation (tms),” IEEE Transactions on Biomedical Engineering, vol. 68, no. 5, pp. 1589–1600, 2021.
  20. M. Hallett, “Transcranial magnetic stimulation: a primer,” Neuron, vol. 55, no. 2, pp. 187–199, 2007.
  21. M. S. George, S. H. Lisanby, and H. A. Sackeim, “Transcranial magnetic stimulation: applications in neuropsychiatry,” Archives of general psychiatry, vol. 56, no. 4, pp. 300–311, 1999.
  22. M. Kobayashi and A. Pascual-Leone, “Transcranial magnetic stimulation in neurology,” The Lancet Neurology, vol. 2, no. 3, pp. 145–156, 2003.
  23. V. Walsh and A. Cowey, “Transcranial magnetic stimulation and cognitive neuroscience,” Nature Reviews Neuroscience, vol. 1, no. 1, pp. 73–80, 2000.
  24. A. T. Sack, R. C. Kadosh, T. Schuhmann, M. Moerel, V. Walsh, and R. Goebel, “Optimizing functional accuracy of tms in cognitive studies: a comparison of methods,” Journal of cognitive neuroscience, vol. 21, no. 2, pp. 207–221, 2009.
  25. J. Lefaucheur, “Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation,” pp. 1–5, 2010.
  26. C. Schoenfeldt-Lecuona, J.-P. Lefaucheur, L. Cardenas-Morales, R. C. Wolf, T. Kammer, and U. Herwig, “The value of neuronavigated rtms for the treatment of depression,” Neurophysiologie Clinique/Clinical Neurophysiology, vol. 40, no. 1, pp. 37–43, 2010.
  27. L. Zorn, P. Renaud, B. Bayle, L. Goffin, C. Lebosse, M. de Mathelin, and J. Foucher, “Design and evaluation of a robotic system for transcranial magnetic stimulation,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 3, pp. 805–815, 2011.
  28. S. M. Goetz, I. C. Kozyrkov, B. Luber, S. H. Lisanby, D. L. Murphy, W. M. Grill, and A. V. Peterchev, “Accuracy of robotic coil positioning during transcranial magnetic stimulation,” Journal of neural engineering, vol. 16, no. 5, p. 054003, 2019.
  29. S. R. Kantelhardt, T. Fadini, M. Finke, K. Kallenberg, J. Siemerkus, V. Bockermann, L. Matthaeus, W. Paulus, A. Schweikard, V. Rohde et al., “Robot-assisted image-guided transcranial magnetic stimulation for somatotopic mapping of the motor cortex: a clinical pilot study,” Acta neurochirurgica, vol. 152, pp. 333–343, 2010.
  30. R. Y. Tsai, R. K. Lenz et al., “A new technique for fully autonomous and efficient 3 d robotics hand/eye calibration,” IEEE Transactions on robotics and automation, vol. 5, no. 3, pp. 345–358, 1989.
  31. M. Shah, R. D. Eastman, and T. Hong, “An overview of robot-sensor calibration methods for evaluation of perception systems,” in Proceedings of the Workshop on Performance Metrics for Intelligent Systems, 2012, pp. 15–20.
  32. K. H. Strobl and G. Hirzinger, “Optimal hand-eye calibration,” in 2006 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2006, pp. 4647–4653.
  33. Y. Liu, S. J. Liu, S. Sefati, T. Jing, A. Kheradmand, and M. Armand, “Inside-out tracking and projection mapping for robot-assisted transcranial magnetic stimulation,” in Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) III, vol. 11931.   SPIE, 2022, pp. 57–70.
  34. A. Tabb and K. M. Ahmad Yousef, “Solving the robot-world hand-eye (s) calibration problem with iterative methods,” Machine Vision and Applications, vol. 28, no. 5-6, pp. 569–590, 2017.
  35. T. Koivukangas, J. Katisko, and J. P. Koivukangas, “Technical accuracy of optical and the electromagnetic tracking systems,” SpringerPlus, vol. 2, no. 1, pp. 1–7, 2013.
  36. K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-D point sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, no. 5, pp. 698–700, 1987.
  37. C. Maurer, J. Fitzpatrick, M. Wang, R. Galloway, R. Maciunas, and G. Allen, “Registration of head volume images using implantable fiducial markers,” IEEE Trans. on Medical Imaging, vol. 16, no. 4, pp. 447–462, Aug 1997.
  38. J. Mandel, “Use of the singular value decomposition in regression analysis,” The American Statistician, vol. 36, no. 1, pp. 15–24, 1982.
  39. E. Basafa, R. J. Murphy, Y. Otake, M. D. Kutzer, S. M. Belkoff, S. C. Mears, and M. Armand, “Subject-specific planning of femoroplasty: an experimental verification study,” Journal of biomechanics, vol. 48, no. 1, pp. 59–64, 2015.
  40. A. Farvardin, M. Bakhtiarinejad, R. J. Murphy, E. Basafa, H. Khanuja, J. K. Oni, and M. Armand, “A biomechanically-guided planning and execution paradigm for osteoporotic hip augmentation: Experimental evaluation of the biomechanics and temperature-rise,” Clinical Biomechanics, vol. 87, p. 105392, 2021.
  41. Y. Otake, M. Armand, O. Sadowsky, R. S. Armiger, M. D. Kutzer, S. C. Mears, P. Kazanzides, and R. H. Taylor, “An image-guided femoroplasty system: development and initial cadaver studies,” in Medical Imaging 2010: Visualization, Image-Guided Procedures, and Modeling, vol. 7625.   SPIE, 2010, pp. 223–234.
  42. A. J. Horbach, M. Staat, D. Pérez-Viana, H.-P. Simmen, V. Neuhaus, H.-C. Pape, A. Prescher, and B. Ciritsis, “Biomechanical in vitro examination of a standardized low-volume tubular femoroplasty,” Clinical Biomechanics, vol. 80, p. 105104, 2020.
  43. M. Bakhtiarinejad, C. Gao, A. Farvardin, G. Zhu, Y. Wang, J. K. Oni, R. H. Taylor, and M. Armand, “A surgical robotic system for osteoporotic hip augmentation: System development and experimental evaluation,” IEEE Transactions on Medical Robotics and Bionics, vol. 5, no. 1, pp. 18–29, 2023.
  44. Y. Liu, A. Kheradmand, and M. Armand, “Toward process controlled medical robotic system,” arXiv preprint arXiv:2308.05809, 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com