Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher Landau-Level Analogs and Signatures of Non-Abelian States in Twisted Bilayer MoTe$_2$ (2404.05697v2)

Published 8 Apr 2024 in cond-mat.str-el, cond-mat.mes-hall, and cond-mat.mtrl-sci

Abstract: Recent experimental discovery of fractional Chern insulators at zero magnetic field in moir\'e superlattices has sparked intense interests in bringing Landau level physics to flat Chern bands. In twisted MoTe$_2$ bilayers (tMoTe$_2$), recent theoretical and experimental studies have found three consecutive flat Chern bands at twist angle $\sim 2\circ$. In this work, we investigate whether higher Landau level physics can be found in these consecutive Chern bands. At twist angles $2.00\circ$ and $1.89\circ$, we identify four consecutive $C = 1$ bands for the $K$ valley in tMoTe$_2$. By constructing Wannier functions directly from density functional theory (DFT) calculations, a six-orbital model is developed to describe the consecutive Chern bands, with the orbitals forming a honeycomb lattice. Exact diagonalization on top of Hartree-Fock calculations are carried out with the Wannier functions. Especially, when the second moir\'e miniband is half-filled, signatures of non-Abelian states are found. Our Wannier-based approach in modelling moir\'e superlattices is faithful to DFT wave functions and can serve as benchmarks for continuum models. The possibility of realizing non-Abelian anyons at zero magnetic field also opens up a new pathway for fault-tolerant quantum information processing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. V. Crépel and L. Fu, Anomalous hall metal and fractional Chern insulator in twisted transition metal dichalcogenides, Phys. Rev. B 107, L201109 (2023).
  2. E. Tang, J.-W. Mei, and X.-G. Wen, High-Temperature Fractional Quantum Hall States, Phys. Rev. Lett. 106, 236802 (2011).
  3. N. Regnault and B. A. Bernevig, Fractional Chern Insulator, Phys. Rev. X 1, 021014 (2011).
  4. H. Yu, M. Chen, and W. Yao, Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors, Natl. Sci. Rev. 7, 12 (2020).
  5. S. A. Parameswaran, R. Roy, and S. L. Sondhi, Fractional Chern insulators and the W∞subscript𝑊{W}_{\infty}italic_W start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT algebra, Phys. Rev. B 85, 241308 (2012).
  6. R. Roy, Band geometry of fractional topological insulators, Phys. Rev. B 90, 165139 (2014).
  7. B. Mera and T. Ozawa, Kähler geometry and Chern insulators: Relations between topology and the quantum metric, Phys. Rev. B 104, 045104 (2021).
  8. T. Ozawa and B. Mera, Relations between topology and the quantum metric for Chern insulators, Phys. Rev. B 104, 045103 (2021).
  9. P. J. Ledwith, A. Vishwanath, and D. E. Parker, Vortexability: A unifying criterion for ideal fractional Chern insulators, arXiv:2209.15023  (2022).
  10. J. Wang, S. Klevtsov, and Z. Liu, Origin of model fractional Chern insulators in all topological ideal flatbands: Explicit color-entangled wave function and exact density algebra, Phys. Rev. Res. 5, 023167 (2023).
  11. G. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B 360, 362 (1991).
  12. M. Storni, R. H. Morf, and S. Das Sarma, Fractional quantum Hall state at ν=52𝜈52\nu=\frac{5}{2}italic_ν = divide start_ARG 5 end_ARG start_ARG 2 end_ARG and the Moore-Read Pfaffian, Phys. Rev. Lett. 104, 076803 (2010).
  13. P. Bonderson, A. Kitaev, and K. Shtengel, Detecting non-abelian statistics in the ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2 fractional quantum Hall state, Phys. Rev. Lett. 96, 016803 (2006).
  14. J. D. Cloizeaux, Energy bands and projection operators in a crystal: Analytic and asymptotic properties, Phys. Rev. 135, A685 (1964).
  15. N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997).
  16. I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B 65, 035109 (2001).
  17. L. Zhang and X.-Y. Song, Moore-read state in half-filled moiré Chern band from three-body pseudo-potential, arXiv:2403.11478  (2024).
  18. E. H. Rezayi, Landau level mixing and the ground state of the ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2 quantum Hall effect, Phys. Rev. Lett. 119, 026801 (2017).
  19. D. T. Son, Is the composite fermion a Dirac particle?, Phys. Rev. X 5, 031027 (2015).
Citations (20)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com