Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi Digit Ising Mapping for Low Precision Ising Solvers (2404.05631v1)

Published 8 Apr 2024 in cs.ET

Abstract: The last couple of years have seen an ever-increasing interest in using different Ising solvers, like Quantum annealers, Coherent Ising machines, and Oscillator-based Ising machines, for solving tough computational problems in various domains. Although the simulations predict massive performance improvements for several tough computational problems, the real implementations of the Ising solvers tend to have limited precision, which can cause significant performance deterioration. This paper presents a novel methodology for mapping the problem on the Ising solvers to artificially increase the effective precision. We further evaluate our method for the Multiple-Input-Multiple-Output signal detection problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Z. Bian, F. Chudak, W. Macready, A. Roy, R. Sebastiani, and S. Varotti, “Solving SAT (and MaxSAT) with a quantum annealer: Foundations, encodings, and preliminary results,” Information and Computation, vol. 275, p. 104609, 2020.
  2. A. K. Singh, D. Venturelli, and K. Jamieson, “Perturbation-based Formulation of Maximum Likelihood MIMO Detection for Coherent Ising Machines,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 2523–2528.
  3. A. K. Singh, K. Jamieson, P. L. McMahon, and D. Venturelli, “Ising Machines’ Dynamics and Regularization for Near-Optimal MIMO Detection,” IEEE Transactions on Wireless Communications, vol. 21, no. 12, pp. 11 080–11 094, 2022.
  4. M. Kim, S. Mandra, D. Venturelli, and K. Jamieson, “Physics-Inspired Heuristics for Soft MIMO Detection in 5G New Radio and Beyond,” in Proceedings of the 27th Annual International Conference on Mobile Computing and Networking (MobiCom), 2021.
  5. M. Kim et al., “Leveraging Quantum Annealing for Large MIMO Processing in Centralized Radio Access Networks,” The 31st ACM Special Interest Group on Data Communication (SIGCOMM), 2019.
  6. M. Kim, D. Venturelli, J. Kaewell, and K. Jamieson, “Warm-started quantum sphere decoding via reverse annealing for massive iot connectivity,” in Proceedings of the 28th Annual International Conference on Mobile Computing And Networking, 2022, pp. 1–14.
  7. M. Kim, D. Venturelli, and K. Jamieson, “Towards hybrid classical-quantum computation structures in wirelessly-networked systems,” in Proceedings of the 19th ACM Workshop on Hot Topics in Networks, 2020, pp. 110–116.
  8. H. Lo, W. Moy, H. Yu, S. Sapatnekar, and C. H. Kim, “An Ising solver chip based on coupled ring oscillators with a 48-node all-to-all connected array architecture,” Nature Electronics, 2023.
  9. A. Lucas, “Ising formulations of many NP problems,” Frontiers in Physics, vol. 2, p. 5, 02 2014.
  10. P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver, “Perspectives of quantum annealing: Methods and implementations,” Reports on Progress in Physics, vol. 83, no. 5, p. 054401, 2020.
  11. Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent Ising machine based on degenerate optical parametric oscillators,” Physical Review A, vol. 88, no. 6, p. 063853, 2013.
  12. A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, “Network of time-multiplexed optical parametric oscillators as a coherent Ising machine,” Nature Photonics, 2014.
  13. P. L. McMahon, A. Marandi et al., “A fully programmable 100-spin coherent Ising machine with all-to-all connections,” Science, 2016.
  14. T. Inagaki, Y. Haribara et al., “A coherent Ising machine for 2000-node optimization problems,” Science, vol. 354, no. 6312, pp. 603–606, 2016.
  15. Y. Haribara, S. Utsunomiya, and Y. Yamamoto, “Computational Principle and Performance Evaluation of Coherent Ising Machine Based on Degenerate Optical Parametric Oscillator Network,” Entropy, 2016.
  16. F. Böhm, G. Verschaffelt, and G. Van der Sande, “A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems,” Nature Communications, vol. 10, 2019.
  17. M. Yamaoka, C. Yoshimura et al., “A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing,” IEEE Journal of Solid-State Circuits, 2015.
  18. M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G. Katzgraber, “Physics-inspired optimization for quadratic unconstrained problems using a digital annealer,” Frontiers in Physics, vol. 7, p. 48, 2019.
  19. H. Goto, K. Tatsumura, and A. R. Dixon, “Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems,” Science Advances, vol. 5, no. 4, p. eaav2372, 2019.
  20. H. Goto, K. Endo, M. Suzuki, Y. Sakai, T. Kanao, Y. Hamakawa, R. Hidaka, M. Yamasaki, and K. Tatsumura, “High-performance combinatorial optimization based on classical mechanics,” Science Advances, vol. 7, no. 6, p. eabe7953, 2021.
  21. T. Leleu, F. Khoyratee, T. Levi, R. Hamerly, T. Kohno, and K. Aihara, “Chaotic Amplitude Control for Neuromorphic Ising Machine in Silico,” arXiv preprint arXiv:2009.04084, 2020.
  22. K. Tatsumura et al., “Scaling out Ising machines using a multi-chip architecture for simulated bifurcation,” Nature Electronics, 2021.
  23. C. Roques-Carmes, Y. Shen et al., “Heuristic recurrent algorithms for photonic Ising machines,” Nature communications, 2020.
  24. M. Prabhu, C. Roques-Carmes, Y. Shen, N. Harris, L. Jing, J. Carolan, R. Hamerly, T. Baehr-Jones, M. Hochberg, V. Čeperić et al., “Accelerating recurrent Ising machines in photonic integrated circuits,” Optica, vol. 7, no. 5, pp. 551–558, 2020.
  25. M. Babaeian, D. T. Nguyen, V. Demir, M. Akbulut, P.-A. Blanche, Y. Kaneda, S. Guha, M. A. Neifeld, and N. Peyghambarian, “A single shot coherent Ising machine based on a network of injection-locked multicore fiber lasers,” Nature communications, vol. 10, no. 1, pp. 1–11, 2019.
  26. D. Pierangeli, G. Marcucci, and C. Conti, “Large-scale photonic Ising machine by spatial light modulation,” Physical review letters, vol. 122, no. 21, p. 213902, 2019.
  27. B. Sutton, K. Y. Camsari, B. Behin-Aein, and S. Datta, “Intrinsic optimization using stochastic nanomagnets,” Scientific reports, 2017.
  28. J. Grollier, D. Querlioz, K. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic spintronics,” Nature electronics, vol. 3, no. 7, pp. 360–370, 2020.
  29. F. Cai, S. Kumar, T. Van Vaerenbergh, X. Sheng, R. Liu, C. Li, Z. Liu, M. Foltin, S. Yu, Q. Xia et al., “Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks,” Nature Electronics, vol. 3, no. 7, pp. 409–418, 2020.
  30. T. Wang and J. Roychowdhury, “OIM: Oscillator-Based Ising Machines for Solving Combinatorial Optimisation Problems,” in Unconventional Computation and Natural Computation, I. McQuillan and S. Seki, Eds.   Cham: Springer International Publishing, 2019, pp. 232–256.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com