Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feedback Stability Under Mixed Gain and Phase Uncertainty (2404.05609v1)

Published 8 Apr 2024 in math.OC, cs.SY, and eess.SY

Abstract: In this study, we investigate the robust feedback stability problem for multiple-input-multiple-output linear time-invariant systems involving sectored-disk uncertainty, namely, dynamic uncertainty subject to simultaneous gain and phase constraints. This problem is thereby called a sectored-disk problem. Employing a frequency-wise analysis approach, we derive a fundamental static matrix problem that serves as a key component in addressing the feedback stability. The study of this matrix problem heavily relies on the Davis-Wielandt (DW) shells of matrices, providing a profound insight into matrices subjected to simultaneous gain and phase constraints. This understanding is pivotal for establishing a less conservative sufficient condition for the matrix sectored-disk problem, from which we formulate several robust feedback stability conditions against sectored-disk uncertainty. Finally, several conditions based on linear matrix inequalities are developed for efficient computation and verification of feedback robust stability against sectored-disk uncertainty.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. I. Postlethwaite, J. Edmunds, and A. MacFarlane, “Principal gains and principal phases in the analysis of linear multivariable feedback systems,” IEEE Trans. Automat. Contr., vol. 26, no. 1, pp. 32–46, 1981.
  2. D. Owens, “The numerical range: A tool for robust stability studies,” Syst. Control. Lett., vol. 5, no. 3, pp. 153–158, 1984.
  3. B. D. Anderson and M. Green, “Hilbert transform and gain/phase error bounds for rational functions,” IEEE Trans. Circuits. Syst., vol. 35, no. 5, pp. 528–535, 1988.
  4. W. M. Haddad and D. Bernstein, “Is there more to robust control theory than small gain?” in Proceedings of the 1992 American Control Conference, 1992, pp. 83–84.
  5. J. Chen, “Multivariable gain-phase and sensitivity integral relations and design trade-offs,” IEEE Trans. Automat. Contr., vol. 43, no. 3, pp. 373–385, 1998.
  6. D. Wang, W. Chen, S. Z. Khong, and L. Qiu, “On the phases of a complex matrix,” Linear Algebra Appl., vol. 593, pp. 152–179, 2020.
  7. W. Chen, D. Wang, S. Z. Khong, and L. Qiu, “A phase theory of MIMO LTI systems,” SIAM J. Control Optim., 2024.
  8. D. Zhao, A. Ringh, L. Qiu, and S. Z. Khong, “Low phase-rank approximation,” Linear Algebra Appl., vol. 639, pp. 177–204, 2022.
  9. C. Chen, D. Zhao, W. Chen, S. Z. Khong, and L. Qiu, “Phase of nonlinear systems,” arXiv preprint arXiv:2012.00692, 2020.
  10. X. Mao, W. Chen, and L. Qiu, “Phases of discrete-time LTI multivariable systems,” Automatica, vol. 142, p. 110311, 2022.
  11. L. Qiu, W. Chen, and D. Wang, “New phase of phase,” J. Syst. Sci. Complex, vol. 34, 2022.
  12. G. Zames, “On the input-output stability of time-varying nonlinear feedback systems–Part II: Conditions involving circles in the frequency plane and sector nonlinearities,” IEEE Trans. Automat. Contr., vol. 11, no. 3, pp. 465–476, 1966.
  13. D. Zhao, L. Qiu, and G. Gu, “Stabilization of two-port networked systems with simultaneous uncertainties in plant, controller, and communication channels,” IEEE Trans. Automat. Contr., vol. 65, no. 3, pp. 1160–1175, 2020.
  14. E. G. Eszter and C. Hollot, “Robustness under combined norm-bounded and positive-real structured uncertainty,” Proc. of 1994 33rd IEEE Conf. Decis. Control, vol. 3, pp. 2157–2162, 1994.
  15. C. K. Li, Y. T. Poon, and N. S. Sze, “Davis-Wielandt shells of operators,” Oper. Matrices, vol. 2, no. 3, pp. 341–355, 2008.
  16. A. L. Tits, V. Balakrishnan, and L. Lee, “Robustness under bounded uncertainty with phase information,” IEEE Trans. Automat. Contr., vol. 44, no. 1, pp. 50–65, 1999.
  17. C. Scherer, “LMI relaxations in robust control,” Eur. J. Control, vol. 12, no. 1, pp. 3–29, 2006.
  18. S. Patra and A. Lanzon, “Stability analysis of interconnected systems with “mixed” negative-imaginary and small-gain properties,” IEEE Trans. Automat. Contr., vol. 56, no. 6, pp. 1395–1400, 2011.
  19. W. M. Haddad, V. Chellaboina, and B. Gholami, “Controller synthesis with guaranteed closed-loop phase constraints,” Automatica, vol. 44, no. 12, pp. 3211–3214, 2008.
  20. D. Zhao, W. Chen, and L. Qiu, “When small gain meets small phase,” arXiv preprint arXiv:2201.06041, 2022.
  21. M. Fan and A. L. Tits, “On the generalized numerical range,” Linear & Multilinear Algebra, vol. 21, pp. 313–320, 1987.
  22. ——, “m-form numerical range and the computation of the structured singular value,” IEEE Trans. Automat. Contr., vol. 33, no. 3, pp. 284–289, 1988.
  23. M. Fan, A. L. Tits, and J. Doyle, “Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics,” IEEE Trans. Automat. Contr., vol. 36, no. 1, pp. 25–38, 1991.
  24. C. K. Li, Y. T. Poon, and N. S. Sze, “Eigenvalues of the sum of matrices from unitary similarity orbits,” SIAM J. Matrix Anal. Appl., vol. 30, no. 2, pp. 560–581, 2008.
  25. J. Doyle and G. Stein, “Multivariable feedback design: Concept for a classical/modern synthesis,” IEEE Trans. Automat. Contr., vol. 26, no. 1, pp. 4–16, 1981.
  26. F. Zhang, “A matrix decomposition and its applications,” Linear Multilinear Algebra, vol. 63, no. 10, pp. 2033–2042, 2015.
  27. S. Furtado and C. R. Johnson, “Spectral variation under congruence for a nonsingular matrix with 0 on the boundary of its field of values,” Linear Algebra Appl., vol. 359, no. 1-3, pp. 67–78, 2003.
  28. I. Lestas, “Large scale heterogeneous networks, the Davis–Wielandt shell, and graph separation,” SIAM J. Control Optim., vol. 50, no. 4, pp. 1753–1774, 2012.
  29. J. Löfberg, “Yalmip : A toolbox for modeling and optimization in matlab,” in IEEE Int. Symp. on CACSD, Taipei, Taiwan, 2004, pp. 284–289.
  30. K. Liu, M. Ono, X. Li, and M. Wu, “Robust performance synthesis for systems with positive-real uncertainty and an extension to the negative-imaginary case,” Automatica, vol. 82, pp. 194–201, 2017.
  31. A. L. Tits and V. Balakrishnan, “Phase-sensitive structured singular value,” in Open Problems in Mathematical Systems and Control Theory, V. Blondel, E. D. Sontag, M. Vidyasagar, and J. C. Willems, Eds.   Springer London, 1999, pp. 221–224.
  32. T. Iwasaki and S. Hara, “Generalized KYP lemma: Unified frequency domain inequalities with design applications,” IEEE Trans. Automat. Contr., vol. 50, pp. 41–59, 2005.
Citations (1)

Summary

We haven't generated a summary for this paper yet.