Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Quantum and Classical Decomposition Methods for Vehicle Routing (2404.05551v1)

Published 8 Apr 2024 in quant-ph

Abstract: Quantum computing is a promising technology to address combinatorial optimization problems, for example via the quantum approximate optimization algorithm (QAOA). Its potential, however, hinges on scaling toy problems to sizes relevant for industry. In this study, we address this challenge by an elaborate combination of two decomposition methods, namely graph shrinking and circuit cutting. Graph shrinking reduces the problem size before encoding into QAOA circuits, while circuit cutting decomposes quantum circuits into fragments for execution on medium-scale quantum computers. Our shrinking method adaptively reduces the problem such that the resulting QAOA circuits are particularly well-suited for circuit cutting. Moreover, we integrate two cutting techniques which allows us to run the resulting circuit fragments sequentially on the same device. We demonstrate the utility of our method by successfully applying it to the archetypical traveling salesperson problem (TSP) which often occurs as a sub-problem in practically relevant vehicle routing applications. For a TSP with seven cities, we are able to retrieve an optimum solution by consecutively running two 7-qubit QAOA circuits. Without decomposition methods, we would require five times as many qubits. Our results offer insights into the performance of algorithms for combinatorial optimization problems within the constraints of current quantum technology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. A. Abbas, A. Ambainis, B. Augustino, A. Bärtschi, H. Buhrman, C. Coffrin, G. Cortiana, V. Dunjko, D. J. Egger, B. G. Elmegreen, N. Franco, F. Fratini, B. Fuller, J. Gacon, C. Gonciulea, S. Gribling, S. Gupta, S. Hadfield, R. Heese, G. Kircher, T. Kleinert, T. Koch, G. Korpas, S. Lenk, J. Marecek, V. Markov, G. Mazzola, S. Mensa, N. Mohseni, G. Nannicini, C. O’Meara, E. P. Tapia, S. Pokutta, M. Proissl, P. Rebentrost, E. Sahin, B. C. B. Symons, S. Tornow, V. Valls, S. Woerner, M. L. Wolf-Bauwens, J. Yard, S. Yarkoni, D. Zechiel, S. Zhuk, and C. Zoufal, “Quantum optimization: Potential, challenges, and the path forward,” 2023.
  2. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, 2018.
  3. F. Liers and G. Pardella, “Simplifying maximum flow computations: The effect of shrinking and good initial flows,” Discrete Applied Mathematics, vol. 159, pp. 2187–2203, 2011.
  4. F. Wagner, J. Nüßlein, and F. Liers, “Enhancing quantum algorithms for quadratic unconstrained binary optimization via integer programming,” 2023.
  5. H. F. Hofmann, “How to simulate a universal quantum computer using negative probabilities,” J. Phys. A: Math. Theor., vol. 42, p. 275304, 2009.
  6. T. Peng, A. W. Harrow, M. Ozols, and X. Wu, “Simulating large quantum circuits on a small quantum computer,” Phys. Rev. Lett., vol. 125, p. 150504, 2020.
  7. S. Feld, C. Roch, T. Gabor, C. Seidel, F. Neukart, I. Galter, W. Mauerer, and C. Linnhoff-Popien, “A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer,” Frontiers in ICT, vol. 6, jun 2019.
  8. L. Palackal, B. Poggel, M. Wulff, H. Ehm, J. Lorenz, and C. B. Mendl, “Quantum-assisted solution paths for the capacitated vehicle routing problem,” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE).   Los Alamitos, CA, USA: IEEE Computer Society, sep 2023, pp. 648–658. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/QCE57702.2023.00080
  9. A. Lucas, “Ising formulations of many NP problems,” Frontiers in Physics, vol. 2, 2014.
  10. P. L. Ivănescu, “Some network flow problems solved with pseudo-boolean programming,” Operations Research, vol. 13, no. 3, pp. 388–399, 1965.
  11. F. Barahona, M. Jünger, and G. Reinelt, “Experiments in quadratic 0–1 programming,” Mathematical Programming, Series A, vol. 44, pp. 127–137, 01 1989.
  12. C. De Simone, “The cut polytope and the boolean quadric polytope,” Discrete Mathematics, vol. 79, no. 1, pp. 71–75, 1990.
  13. M. Jünger and S. Mallach, “Exact facetial odd-cycle separation for maximum cut and binary quadratic optimization,” INFORMS Journal on Computing, vol. 33, no. 4, pp. 1419–1430, 2021.
  14. K. Mitarai and K. Fujii, “Overhead for simulating a non-local channel with local channels by quasiprobability sampling,” Quantum, vol. 5, p. 388, 2021.
  15. C. Piveteau and D. Sutter, “Circuit knitting with classical communication,” IEEE Trans. Inf. Theory, p. 1, 2023.
  16. K. Mitarai and K. Fujii, “Constructing a virtual two-qubit gate by sampling single-qubit operations,” New J. Phys., vol. 23, p. 023021, 2021.
  17. C. Ufrecht, M. Periyasamy, S. Rietsch, D. D. Scherer, A. Plinge, and C. Mutschler, “Cutting multi-control quantum gates with ZX calculus,” Quantum, vol. 7, p. 1147, 2023.
  18. C. Ufrecht, L. S. Herzog, D. D. Scherer, M. Periyasamy, S. Rietsch, A. Plinge, and C. Mutschler, “Optimal joint cutting of two-qubit rotation gates,” arXiv:2312.09679, 2023.
  19. L. Schmitt, C. Piveteau, and D. Sutter, “Cutting circuits with multiple two-qubit unitaries,” arXiv:2312.11638, 2024.
  20. A. W. Harrow and A. Lowe, “Optimal quantum circuit cuts with application to clustered Hamiltonian simulation,” arXiv:2403.01018, 2024.
  21. L. Brenner, C. Piveteau, and D. Sutter, “Optimal wire cutting with classical communication,” arXiv:2302.03366, 2023.
  22. P. Pednault, “An alternative approach to optimal wire cutting without ancilla qubits,” arXiv:2303.08287, 2023.
  23. A. Lowe, M. Medvidović, A. Hayes, L. J. O’Riordan, T. R. Bromley, J. M. Arrazola, and N. Killoran, “Fast quantum circuit cutting with randomized measurements,” Quantum, vol. 7, p. 934, 2023.
  24. H. Harada, K. Wada, and N. Yamamoto, “Doubly optimal parallel wire cutting without ancilla qubits,” arXiv:2303.07340, 2023.
  25. G. Uchehara, T. M. Aamodt, and O. D. Matteo, “Rotation-inspired circuit cut optimization,” in 2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS).   Los Alamitos, CA, USA: IEEE Computer Society, 2022, p. 50.
  26. A. C. Vazquez, C. Tornow, D. Riste, S. Woerner, M. Takita, and D. J. Egger, “Scaling quantum computing with dynamic circuits,” arXiv:2402.17833, 2024.
  27. M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, p. 1169, 2013.
  28. C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science, vol. 339, p. 1164, 2013.
  29. X. Yuan, B. Regula, R. Takagi, and M. Gu, “Virtual quantum resource distillation,” arXiv:2303.00955, 2023. [Online]. Available: https://arxiv.org/abs/2303.00955
  30. M. Bechtold, J. Barzen, F. Leymann, and A. Mandl, “Cutting a wire with non-maximally entangled states,” arXiv:2403.09690, 2024.
  31. T. Bonato, M. Jünger, G. Reinelt, and G. Rinaldi, “Lifting and separation procedures for the cut polytope,” Mathematical Programming, vol. 146, no. 1, pp. 351–378, Aug 2014.
  32. U. Feige, M. Hajiaghayi, and J. R. Lee, “Improved approximation algorithms for minimum weight vertex separators,” SIAM Journal on Computing, vol. 38, no. 2, pp. 629–657, 2008.
  33. H. Y. Althoby, M. Didi Biha, and A. Sesboüé, “Exact and heuristic methods for the vertex separator problem,” Computers & Industrial Engineering, vol. 139, p. 106135, 2020.
  34. T. N. Bui and C. Jones, “Finding good approximate vertex and edge partitions is np-hard,” Information Processing Letters, vol. 42, no. 3, pp. 153–159, 1992. [Online]. Available: https://www.sciencedirect.com/science/article/pii/002001909290140Q
  35. M. Bechtold, J. Barzen, F. Leymann, A. Mandl, J. Obst, F. Truger, and B. Weder, “Investigating the effect of circuit cutting in QAOA for the MaxCut problem on NISQ devices,” arXiv:2302.01792, 2023.
  36. Z. H. Saleem, T. Tomesh, M. A. Perlin, P. Gokhale, and M. Suchara, “Quantum divide and conquer for combinatorial optimization and distributed computing,” arXiv:2107.07532, 2021.
  37. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  38. A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and function using networkx,” in Proceedings of the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.
  39. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023.
  40. G. Gentinetta, F. Metz, and G. Carleo, “Overhead-constrained circuit knitting for variational quantum dynamics,” arXiv:2309.07857, 2024.
  41. R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences Department, R. E. Miller, J. W. Thatcher, and J. D. Bohlinger, Eds.   Boston, MA: Springer US, 1972, pp. 85–103.
  42. M. Jünger and S. Mallach, “Odd-Cycle Separation for Maximum Cut and Binary Quadratic Optimization,” in 27th Annual European Symposium on Algorithms (ESA 2019), ser. Leibniz International Proceedings in Informatics (LIPIcs), M. A. Bender, O. Svensson, and G. Herman, Eds., vol. 144.   Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, pp. 63:1–63:13.
  43. D. Rehfeldt, T. Koch, and Y. Shinano, “Faster exact solution of sparse maxcut and qubo problems,” Mathematical Programming Computation, vol. 15, no. 3, pp. 445–470, Sep 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com