Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Allocation of Tasks and Price of Anarchy of Distributed Optimization in Networked Computing Facilities (2404.05543v1)

Published 8 Apr 2024 in cs.GT, cs.DC, and cs.PF

Abstract: The allocation of computing tasks for networked distributed services poses a question to service providers on whether centralized allocation management be worth its cost. Existing analytical models were conceived for users accessing computing resources with practically indistinguishable (hence irrelevant for the allocation decision) delays, which is typical of services located in the same distant data center. However, with the rise of the edge-cloud continuum, a simple analysis of the sojourn time that computing tasks observe at the server misses the impact of diverse latency values imposed by server locations. We therefore study the optimization of computing task allocation with a new model that considers both distance of servers and sojourn time in servers. We derive exact algorithms to optimize the system and we show, through numerical analysis and real experiments, that differences in server location in the edge-cloud continuum cannot be neglected. By means of algorithmic game theory, we study the price of anarchy of a distributed implementation of the computing task allocation problem and unveil important practical properties such as the fact that the price of anarchy tends to be small -- except when the system is overloaded -- and its maximum can be computed with low complexity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. Zhang and K. B. Letaief, “Mobile edge intelligence and computing for the Internet of vehicles,” Proc. IEEE, vol. 108, no. 2, pp. 246–261, 2019.
  2. C.-X. Wang, X. You et al., “On the road to 6G: Visions, requirements, key technologies and testbeds,” IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 905–974, 2023.
  3. Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in edge computing: A survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 4, pp. 2131–2165, 2021.
  4. Z. Cheng, Z. Gao, M. Liwang, L. Huang, X. Du, and M. Guizani, “Intelligent task offloading and energy allocation in the uav-aided mobile edge-cloud continuum,” IEEE Netw., vol. 35, no. 5, pp. 42–49, 2021.
  5. T. H. Szymanski, “An ultra-low-latency guaranteed-rate Internet for cloud services,” IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 123–136, 2014.
  6. S. Ranjan, R. Karrer, and E. W. Knightly, “Wide area redirection of dynamic content by Internet data centers,” in Proc. IEEE Infocom, 2004, pp. 816–826.
  7. C. E. Bell and S. Stidham, “Individual versus social optimization in the allocation of customers to alternative servers,” Manag. Sc., vol. 29, pp. 831–839, 1983.
  8. L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker, “On selfish routing in Internet-like environments,” in Proc. ACM SIGCOMM, 2003, p. 151–162.
  9. C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely, and S. Diot, “Packet-level traffic measurements from the sprint ip backbone,” IEEE Netw., vol. 17, no. 6, pp. 6–16, 2003.
  10. S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large networks,” IEEE/ACM Trans. Netw., vol. 12, no. 2, pp. 219–232, 2004.
  11. M. Haviv and T. Roughgarden, “The price of anarchy in an exponential multi-server,” Op. Res. Lett., vol. 35, no. 4, pp. 421–426, 2007.
  12. D. Milojicic, “The edge-to-cloud continuum,” Computer, vol. 53, no. 11, pp. 16–25, 2020.
  13. T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion-aware path selection for Tor,” in Proc. Financial Crypt. Data Sec. Conf.   Springer, 2012, pp. 98–113.
  14. T. Roughgarden, “The price of anarchy is independent of the network topology,” in Proc. ACM STOC, 2002, p. 428–437.
  15. E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,” Comput. Sci. Rev., vol. 3, no. 2, p. 65–69, 2009.
  16. S. Ghosh and R. Hassin, “Inefficiency in stochastic queueing systems with strategic customers,” Eur. J. Op. Res., vol. 295, no. 1, pp. 1–11, 2021.
  17. D. Braess, “Uber ein Paradoxon aus der Verkehrsplanung,” Unternehmensforschung, vol. 12, 1969.
  18. R. Feldmann, M. Gairing, T. Lucking, B. Monien, and M. Rode, “Selfish routing in non-cooperative networks: a survey,” in Proc. MFCS.   Springer, 2003, p. 21–45.
  19. T. Wu and D. Starobinski, “On the price of anarchy in unbounded delay networks,” in Proc. ACM GameNets.   ACM, 2006, p. 13–es.
  20. ——, “A comparative analysis of server selection in content replication networks,” IEEE/ACM Trans. Netw., vol. 16, no. 6, pp. 1461–1474, 2008.
  21. E. Altman, U. Ayesta, and B. J. Prabhu, “Load balancing in processor sharing systems,” Telecommun. Syst., vol. 47, no. 1, 2011.
  22. R. D. Foley and D. R. McDonald, “Join the shortest queue: Stability and exact asymptotics,” Ann. Appl. Prob., vol. 11, no. 3, pp. 569–607, 2001.
  23. V. Gupta, M. Harchol Balter, K. Sigman, and W. Whitt, “Analysis of join-the-shortest-queue routing for web server farms,” Perf. Eval., vol. 64, no. 9, pp. 1062–1081, 2007.
  24. European Telecommunications Standards Institute, “ETSI TS 123 501 - V15.3.0 - 5G; System Architecture for the 5G System (3GPP TS 23.501 version 15.3.0 Release 15),” Technical Specification, 2018.
  25. ETSI, “TS 128 531 - V18.2.0 - 5G; Management and orchestration; Provisioning (Release 16),” ETSI, Technical Specification, 2023.
  26. Golang developers, “Golang.” [Online]. Available: https://go.dev
  27. R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, “QUIC: A UDP-based secure and reliable transport for HTTP/2.” [Online]. Available: tools.ietf.org/html/draft-tsvwg-quic-protocol-02
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com