Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Escape time in bistable neuronal populations driven by colored synaptic noise (2404.05391v1)

Published 8 Apr 2024 in q-bio.NC

Abstract: Local networks of neurons are nonlinear systems driven by synaptic currents elicited by its own spiking activity and the input received from other brain areas. Synaptic currents are well approximated by correlated Gaussian noise. Besides, the population dynamics of neuronal networks is often found to be multistable, allowing the noise source to induce state transitions. State changes in neuronal systems underlies the way information is encoded and transformed. The characterization of the escape time from metastable states is then a cornerstone to understand how information is processed in the brain. The effects of correlated input forcing bistable systems have been studied for over half a century, nonetheless most results are perturbative or valid only when a separation of time scales is present. Here, we present a novel and exact result holding when the correlation time of the noise source is identical to that of the neural population, hence solving in a very general setting the mean escape time problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. D. Sussillo, Neural circuits as computational dynamical systems, Curr. Opin. Neurobiol. 25, 156 (2014).
  2. H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. 12, 1 (1972).
  3. S. Ostojic and N. Brunel, From spiking neuron models to linear-nonlinear models, PLoS Comput. Biol. 7, e1001056 (2011).
  4. A. Treves, Mean-field analysis of neuronal spike dynamics, Network 4, 259 (1993).
  5. N. Brunel and V. Hakim, Fast global oscillations in networks of integrate-and-fire neurons with low firing rates, Neural Comput. 11, 1621 (1999).
  6. E. S. Schaffer, S. Ostojic, and L. F. Abbott, A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks, PLoS Comput. Biol. 9, e1003301 (2013).
  7. E. Montbrió, D. Pazó, and A. Roxin, Macroscopic description for networks of spiking neurons, Phys. Rev. X 5, 021028 (2015).
  8. M. Mattia, Low-dimensional firing rate dynamics of spiking neuron networks, arXiv , 1609.08855 (2016), arXiv:1609.08855 .
  9. K. I. Funahashi and Y. Nakamura, Approximation of dynamical systems by continuous time recurrent neural networks, Neural Netw. 6, 801 (1993).
  10. H. T. Siegelmann and E. D. Sontag, On the computational power of neural nets, in Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory (1992) pp. 440–449.
  11. P. Koiran, M. Cosnard, and M. Garzon, Computability with low-dimensional dynamical systems, Theor. Comput. Sci. 132, 113 (1994).
  12. M. A. Cohen and S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst. Man Cybern. SMC-13, 815 (1983).
  13. J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons., Proc. Natl. Acad. Sci. USA 81, 3088 (1984).
  14. F. Mastrogiuseppe and S. Ostojic, Linking connectivity, dynamics and computations in recurrent neural networks, Neuron 99, 609 (2017).
  15. A. J. Bray, S. N. Majumdar, and G. Schehr, Persistence and first-passage properties in nonequilibrium systems, Adv. Phys. 62, 225 (2013).
  16. P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: fifty years after Kramers, Rev. Mod. Phys. 62, 251 (1990).
  17. E. A. Codling, M. J. Plank, and S. Benhamou, Random walk models in biology, J. R. Soc. Interface. 5, 813 (2008).
  18. N. G. Van Kampen, Stochastic processes in physics and chemistry, Vol. 1 (Elsevier, 1992).
  19. A. A. Faisal, L. P. J. Selen, and D. M. Wolpert, Noise in the nervous system, Nat. Rev. Neurosci. 9, 292 (2008).
  20. H. C. Tuckwell, Stochastic processes in the neurosciences (SIAM, 1989).
  21. M. Mattia and P. D. Giudice, Population dynamics of interacting spiking neurons, Phys. Rev. E 66, 051917 (2002).
  22. G. V. Vinci, R. Benzi, and M. Mattia, Self-consistent stochastic dynamics for finite-size networks of spiking neurons, Phys. Rev. Lett. 130, 097402 (2023).
  23. M. Mattia and G. V. Vinci, Low dimensional dynamics of spiking neuron networks, Zenodo , 5518215 (2021).
  24. P. Hänggi and P. Jung, Colored noise in dynamical systems, Adv. Chem. Phys. 89, 239 (1995).
  25. T. Deniz and S. Rotter, Solving the two-dimensional fokker-planck equation for strongly correlated neurons., Phys. Rev. E 95, 012412 (2017).
  26. B. Shizgal, Spectral methods in chemistry and physics, Scientific Computation. Springer  (2015).
  27. Julia script for numerical computation of eigenvalues and eigenfunctions can be found in the repository: https://github.com/giav1n/NeuralPopColoredNoise.
  28. R. Moreno-Bote and N. Parga, Role of synaptic filtering on the firing response of simple model neurons., Phys. Rev. Lett. 92, 028102 (2004).
  29. E. Woillez, Y. Kafri, and V. Lecomte, Nonlocal stationary probability distributions and escape rates for an active ornstein-uhlenbeck particle, J. Stat. Mech. 2020, 10.1088/1742-5468/ab7e2e (2020).
  30. S. Sato, Evaluation of the first-passage time probability to a square root boundary for the wiener process, J. Appl. Probab. 14, 850 (1977).
  31. L. Caprini, F. Cecconi, and U. Marini Bettolo Marconi, Correlated escape of active particles across a potential barrier, J. Chem. Phys. 155 (2021a).
  32. L. Dabelow, S. Bo, and R. Eichhorn, How irreversible are steady-state trajectories of a trapped active particle?, J. Stat. Mech. 2021, 033216 (2021).
  33. L. Caprini, A. Puglisi, and A. Sarracino, Fluctuation–dissipation relations in active matter systems, Symmetry 13, 81 (2021b).
  34. M. Stern, N. Istrate, and L. Mazzucato, A reservoir of timescales emerges in recurrent circuits with heterogeneous neural assemblies, eLife 12, 10.7554/eLife.86552 (2023).
  35. H. Sompolinsky, A. Crisanti, and H. Sommers, Chaos in random neural networks, Phys. Rev. Lett. 61, 259 (1988).
  36. M. Stern, H. Sompolinsky, and L. F. Abbott, Dynamics of random neural networks with bistable units, Phys. Rev. E 90, 062710 (2014).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com