Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Widely-tunable and narrow-linewidth hybrid-integrated diode laser at 637 nm (2404.05325v1)

Published 8 Apr 2024 in physics.optics

Abstract: We present hybrid-integrated extended cavity diode lasers tunable around 637 nm, with a gain-wide spectral coverage of 8 nm. This tuning range allows addressing the zero-phonon line of nitrogen vacancy centers and includes the wavelength of HeNe lasers (633 nm). The lasers provide wide mode-hop free tuning up to 97 GHz and a narrow intrinsic linewidth down to 10 kHz. The maximum output power is 2.5 mW in a single-mode fiber, corresponding to an on-chip power of 4.0 mW. Full integration and packaging in a standard housing with fiber pigtails provide high intrinsic stability and will enable integration into complex optical systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A concise review,” Appl. Phys.Reviews 6, 041303 (2019).
  2. P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat.Communications 8, 13984 (2017).
  3. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Reviews ModernPhysics 89, 035002 (2017).
  4. G. Moody, V. J. Sorger, D. J. Blumenthal, P. W. Juodawlkis, W. Loh, C. Sorace-Agaskar, A. E. Jones, K. C. Balram, J. C. Matthews, A. Laing et al., “2022 Roadmap on integrated quantum photonics,” J. Physics:Photonics 4, 012501 (2022).
  5. C. Taballione, M. C. Anguita, M. de Goede, P. Venderbosch, B. Kassenberg, H. Snijders, N. Kannan, W. L. Vleeshouwers, D. Smith, J. P. Epping, R. van der Meer, P. W. H. Pinkse, H. van den Vlekkert, and J. J. Renema, “20-Mode Universal Quantum Photonic Processor,” Quantum 7, 1071 (2023).
  6. F. H. B. Somhorst, R. van der Meer, M. C. Anguita, R. Schadow, H. J. Snijders, M. de Goede, B. Kassenberg, P. Venderbosch, C. Taballione, J. P. Epping, H. H. van den Vlekkert, J. Timmerhuis, J. F. F. Bulmer, J. Lugani, I. A. Walmsley, P. W. H. Pinkse, J. Eisert, N. Walk, and J. J. Renema, “Quantum simulation of thermodynamics in an integrated quantum photonic processor,” arXiv preprintarXiv:2201.00049 (2021).
  7. H. Mahmudlu, R. Johanning, A. Van Rees, A. Khodadad Kashi, J. P. Epping, R. Haldar, K.-J. Boller, and M. Kues, “Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation,” Nat.Photonics 17, 518–524 (2023).
  8. I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. Stadler, B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. Schindler, and T. Monz, “Compact ion-trap quantum computing demonstrator,” PRXQuantum 2, 020343 (2021).
  9. B. J. Shields, Q. P. Unterreithmeier, N. P. de Leon, H. Park, and M. D. Lukin, “Efficient readout of a single spin state in diamond via spin-to-charge conversion,” Physical ReviewLetters 114, 136402 (2015).
  10. C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans et al., “Low-loss Si3N4 TriPlex optical waveguides: Technology and applications overview,” IEEE J. Selected Topics QuantumElectronics 24, 4400321 (2018).
  11. C. A. A. Franken, A. van Rees, L. V. Winkler, Y. Fan, D. Geskus, R. Dekker, D. H. Geuzebroek, C. Fallnich, P. J. M. van der Slot, and K.-J. Boller, “Hybrid-integrated diode laser in the visible spectral range,” OpticsLetters 46, 4904–4907 (2021).
  12. W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, and J. E. Bowers, “Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators,” Nat.Photonics 15, 346–353 (2021).
  13. M. Corato-Zanarella, A. Gil-Molina, X. Ji, M. C. Shin, A. Mohanty, and M. Lipson, “Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths,” Nat.Photonics pp. 1–8 (2022).
  14. A. Siddharth, T. Wunderer, G. Lihachev, A. S. Voloshin, C. Haller, R. N. Wang, M. Teepe, Z. Yang, J. Liu, J. Riemensberger, N. Grandjean, N. Johnson, and T. J. Kippenberg, “Near ultraviolet photonic integrated lasers based on silicon nitride,” APLPhotonics 7, 046108 (2022).
  15. A. van Rees, L. V. Winkler, P. Brochard, D. Geskus, P. J. M. van der Slot, C. Nölleke, and K.-J. Boller, “Long-term absolute frequency stabilization of a hybrid-integrated InP-Si33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTN44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT diode laser,” IEEE PhotonicsJournal 15, 1502408 (2023).
  16. Y. Fan, A. van Rees, P. J. Van der Slot, J. Mak, R. M. Oldenbeuving, M. Hoekman, D. Geskus, C. G. H. Roeloffzen, and K.-J. Boller, “Hybrid integrated InP-Si33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTN44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT diode laser with a 40-Hz intrinsic linewidth,” OpticsExpress 28, 21713–21728 (2020).
  17. N. Kondratiev, V. Lobanov, A. Cherenkov, A. Voloshin, N. Pavlov, S. Koptyaev, and M. Gorodetsky, “Self-injection locking of a laser diode to a high-q wgm microresonator,” OpticsExpress 25, 28167–28178 (2017).
  18. J. Guo, C. A. McLemore, C. Xiang, D. Lee, L. Wu, W. Jin, M. Kelleher, N. Jin, D. Mason, L. Chang, A. Feshali, M. Paniccia, P. T. Rakich, K. J. Vahala, S. A. Diddams, F. Quinlan, and J. E. Bowers, “Chip-based laser with 1-hertz integrated linewidth,” ScienceAdvances 8, eabp9006 (2022).
  19. V. Snigirev, A. Riedhauser, G. Lihachev, M. Churaev, J. Riemensberger, R. N. Wang, A. Siddharth, G. Huang, C. Möhl, Y. Popoff, U. Drechsler, D. Caimi, S. Hönl, J. Liu, P. Seidler, and T. J. Kippenberg, “Ultrafast tunable lasers using lithium niobate integrated photonics,” Nature 615, 411–417 (2023).
  20. A. van Rees, Y. Fan, D. Geskus, E. J. Klein, R. M. Oldenbeuving, P. J. M. van der Slot, and K.-J. Boller, “Ring resonator enhanced mode-hop-free wavelength tuning of an integrated extended-cavity laser,” Opt.Express 28, 5669–5683 (2020).
  21. D. Wandt, M. Laschek, K. Przyklenk, A. Tünnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm,” OpticsCommunications 130, 81–84 (1996).
  22. M. Sinclair, “Silicon nitride waveguides and micro-ring resonators for photonic integrated circuits,” Ph.D. thesis, University of Glasgow (2020).
  23. N. Chauhan, A. Isichenko, K. Liu, J. Wang, Q. Zhao, R. O. Behunin, P. T. Rakich, A. M. Jayich, C. Fertig, C. W. Hoyt, and D. J. Blumenthal, “Visible light photonic integrated brillouin laser,” Nat.Communications 12, 4685 (2021).
  24. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt.Express 19, 24090–24101 (2011).
  25. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & PhotonicsReviews 6, 47–73 (2012).
  26. K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid integrated semiconductor lasers with silicon nitride feedback circuits,” Photonics 7, 4 (2020).
  27. A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser & PhotonicsReviews 10, 420–431 (2016).
  28. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics TechnologyLetters 14, 483–485 (2002).
  29. M. Schiemangk, S. Spießberger, A. Wicht, G. Erbert, G. Tränkle, and A. Peters, “Accurate frequency noise measurement of free-running lasers,” Appl.Opt. 53, 7138–7143 (2014).
  30. H. Tsuchida, “Waveform measurement technique for phase/frequency-modulated lights based on self-heterodyne interferometry,” Opt.Express 25, 4793–4799 (2017).
  31. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” PhysicalReview 112, 1940–1949 (1958).
  32. P. Pintus, J. Guo, M. A. Tran, W. Jin, J. Liang, J. Peters, C. Xiang, O. J. Ohanian III, and J. E. Bowers, “Demonstration of large mode-hop-free tuning in narrow-linewidth heterogeneous integrated laser,” J. LightwaveTechnology 41, 6723–6734 (2023).
  33. C. A. A. Franken, W. A. P. M. Hendriks, L. V. Winkler, M. Dijkstra, A. R. do Nascimento Jr., A. van Rees, M. R. S. Mardani, R. Dekker, J. van Kerkhof, P. J. M. van der Slot, S. M. García-Blanco, and K. J. Boller, “Hybrid integrated near UV lasers using the deep-UV Al22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT platform,” arXiv: 2302.11492[physics.optics] (2023).
  34. M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, S. Wehner, and R. Hanson, “Realization of a multinode quantum network of remote solid-state qubits,” Science 372, 259–264 (2021).
  35. P. P. J. Schrinner, J. Olthaus, D. E. Reiter, and C. Schuck, “Integration of diamond-based quantum emitters with nanophotonic circuits,” NanoLetters 20, 8170–8177 (2020).
  36. K. K. Mehta, C. Zhang, M. Malinowski, T.-L. Nguyen, M. Stadler, and J. P. Home, “Integrated optical multi-ion quantum logic,” Nature 586, 533–537 (2020).
Citations (3)

Summary

We haven't generated a summary for this paper yet.