Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Preference Elicitation in Interactive and User-centered Algorithmic Recourse: An Initial Exploration (2404.05270v1)

Published 8 Apr 2024 in cs.HC, cs.CY, and cs.LG

Abstract: Algorithmic Recourse aims to provide actionable explanations, or recourse plans, to overturn potentially unfavourable decisions taken by automated machine learning models. In this paper, we propose an interaction paradigm based on a guided interaction pattern aimed at both eliciting the users' preferences and heading them toward effective recourse interventions. In a fictional task of money lending, we compare this approach with an exploratory interaction pattern based on a combination of alternative plans and the possibility of freely changing the configurations by the users themselves. Our results suggest that users may recognize that the guided interaction paradigm improves efficiency. However, they also feel less freedom to experiment with "what-if" scenarios. Nevertheless, the time spent on the purely exploratory interface tends to be perceived as a lack of efficiency, which reduces attractiveness, perspicuity, and dependability. Conversely, for the guided interface, more time on the interface seems to increase its attractiveness, perspicuity, and dependability while not impacting the perceived efficiency. That might suggest that this type of interfaces should combine these two approaches by trying to support exploratory behavior while gently pushing toward a guided effective solution.

Citations (2)

Summary

We haven't generated a summary for this paper yet.