Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Band Selection Using Fused HSI and LiDAR Attention Integrating With Autoencoder (2404.05258v1)

Published 8 Apr 2024 in cs.CV

Abstract: Band selection in hyperspectral imaging (HSI) is critical for optimising data processing and enhancing analytical accuracy. Traditional approaches have predominantly concentrated on analysing spectral and pixel characteristics within individual bands independently. These approaches overlook the potential benefits of integrating multiple data sources, such as Light Detection and Ranging (LiDAR), and is further challenged by the limited availability of labeled data in HSI processing, which represents a significant obstacle. To address these challenges, this paper introduces a novel unsupervised band selection framework that incorporates attention mechanisms and an Autoencoder for reconstruction-based band selection. Our methodology distinctively integrates HSI with LiDAR data through an attention score, using a convolutional Autoencoder to process the combined feature mask. This fusion effectively captures essential spatial and spectral features and reduces redundancy in hyperspectral datasets. A comprehensive comparative analysis of our innovative fused band selection approach is performed against existing unsupervised band selection and fusion models. We used data sets such as Houston 2013, Trento, and MUUFLE for our experiments. The results demonstrate that our method achieves superior classification accuracy and significantly outperforms existing models. This enhancement in HSI band selection, facilitated by the incorporation of LiDAR features, underscores the considerable advantages of integrating features from different sources.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern trends in hyperspectral image analysis: A review,” IEEE Access, vol. 6, pp. 14 118–14 129, 2018.
  2. M. Ahmad, S. Shabbir, S. K. Roy, D. Hong, X. Wu, J. Yao, A. M. Khan, M. Mazzara, S. Distefano, and J. Chanussot, “Hyperspectral image classification—traditional to deep models: A survey for future prospects,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 968–999, 2022.
  3. M. Teke, H. S. Deveci, O. Haliloğlu, S. Z. Gürbüz, and U. Sakarya, “A short survey of hyperspectral remote sensing applications in agriculture,” in 2013 6th International Conference on Recent Advances in Space Technologies (RAST), 2013, pp. 171–176.
  4. P. K. Sethy, C. Pandey, Y. K. Sahu, and S. K. Behera, “Hyperspectral imagery applications for precision agriculture-a systemic survey,” Multimedia Tools and Applications, pp. 1–34, 2022.
  5. M. B. Stuart, A. J. McGonigle, and J. R. Willmott, “Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems,” Sensors, vol. 19, no. 14, p. 3071, 2019.
  6. S.-E. Qian, “Hyperspectral satellites, evolution, and development history,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 7032–7056, 2021.
  7. W. Sun and Q. Du, “Hyperspectral band selection: A review,” IEEE Geoscience and Remote Sensing Magazine, vol. 7, no. 2, pp. 118–139, 2019.
  8. O. S. Chander Goud, T. H. Sarma, and C. S. Bindu, “Optimal band selection in hyperspectral images using improved k-means clustering with spectral similarity measures,” in 2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), 2023, pp. 268–271.
  9. P. Ribalta Lorenzo, L. Tulczyjew, M. Marcinkiewicz, and J. Nalepa, “Hyperspectral band selection using attention-based convolutional neural networks,” IEEE Access, vol. 8, pp. 42 384–42 403, 2020.
  10. M. J. Mashala, T. Dube, B. T. Mudereri, K. K. Ayisi, and M. R. Ramudzuli, “A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments,” Remote Sensing, vol. 15, no. 16, p. 3926, 2023.
  11. C. Yu, S. Zhou, M. Song, and C.-I. Chang, “Semisupervised hyperspectral band selection based on dual-constrained low-rank representation,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.
  12. S. S. Sawant and P. Manoharan, “Unsupervised band selection based on weighted information entropy and 3d discrete cosine transform for hyperspectral image classification,” International Journal of Remote Sensing, vol. 41, no. 10, pp. 3948–3969, 2020.
  13. J. Wang, C. Tang, Z. Li, X. Liu, W. Zhang, E. Zhu, and L. Wang, “Hyperspectral band selection via region-aware latent features fusion based clustering,” Information Fusion, vol. 79, pp. 162–173, 2022.
  14. X. Bai, Z. Guo, Y. Wang, Z. Zhang, and J. Zhou, “Semisupervised hyperspectral band selection via spectral–spatial hypergraph model,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 6, pp. 2774–2783, 2015.
  15. J. Feng, L. Jiao, F. Liu, T. Sun, and X. Zhang, “Mutual-information-based semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 5, pp. 2956–2969, 2015.
  16. X. Wang, L. Chen, T. Ban, D. Lyu, Y. Guan, X. Wu, X. Zhou, and H. Chen, “Accurate label refinement from multiannotator of remote sensing data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–13, 2023.
  17. L. Mou, S. Saha, Y. Hua, F. Bovolo, L. Bruzzone, and X. X. Zhu, “Deep reinforcement learning for band selection in hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
  18. M. Zeng, Y. Cai, Z. Cai, X. Liu, P. Hu, and J. Ku, “Unsupervised hyperspectral image band selection based on deep subspace clustering,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 12, pp. 1889–1893, 2019.
  19. Q. Wang, F. Zhang, and X. Li, “Optimal clustering framework for hyperspectral band selection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 10, pp. 5910–5922, 2018.
  20. C. O. Ayna, R. Mdrafi, Q. Du, and A. C. Gurbuz, “Learning-based optimization of hyperspectral band selection for classification,” Remote Sensing, vol. 15, no. 18, p. 4460, 2023.
  21. F. Feng, S. Wang, C. Wang, and J. Zhang, “Learning deep hierarchical spatial–spectral features for hyperspectral image classification based on residual 3d-2d cnn,” Sensors, vol. 19, no. 23, p. 5276, 2019.
  22. F. Zhang, Q. Wang, and X. Li, “Optimal neighboring reconstruction for hyperspectral band selection,” in IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, pp. 4709–4712.
  23. Q. Wang, F. Zhang, and X. Li, “Hyperspectral band selection via optimal neighborhood reconstruction,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 12, pp. 8465–8476, 2020.
  24. Y. Liu, X. Li, Z. Xu, and Z. Hua, “Bsformer: Transformer-based reconstruction network for hyperspectral band selection,” IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1–5, 2023.
  25. D. Bao, G. Tuxworth, and J. Zhou, “Similarity-based hyperspectral band selection using deep reinforcement learning,” in 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2022, pp. 1–5.
  26. S. Feng, Y. Itoh, M. Parente, and M. F. Duarte, “Hyperspectral band selection from statistical wavelet models,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 4, pp. 2111–2123, 2017.
  27. N. Jeenath Shafana, J. K T, and R. Divagar Iyyappan, “Optimal band selection and scale based feature selection for hyper spectral image classification using hybrid neural network,” in 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), 2022, pp. 1515–1519.
  28. Q. Du and H. Yang, “Similarity-based unsupervised band selection for hyperspectral image analysis,” IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 4, pp. 564–568, 2008.
  29. M. Feng, F. Gao, J. Fang, and J. Dong, “Hyperspectral and lidar data classification based on linear self-attention,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.   IEEE, 2021, pp. 2401–2404.
  30. J. Huang, Y. Zhang, F. Yang, and L. Chai, “Attention-guided fusion and classification for hyperspectral and lidar data,” Remote Sensing, vol. 16, no. 1, p. 94, 2023.
  31. B. Rasti, P. Ghamisi, and R. Gloaguen, “Hyperspectral and lidar fusion using extinction profiles and total variation component analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3997–4007, 2017.
  32. Y. Tang, S. Song, S. Gui, W. Chao, C. Cheng, and R. Qin, “Active and low-cost hyperspectral imaging for the spectral analysis of a low-light environment,” Sensors, vol. 23, no. 3, p. 1437, 2023.
  33. S. Falahatnejad and A. Karami, “Deep fusion of hyperspectral and LiDAR images using attention-based CNN,” SN Computer Science, vol. 4, no. 1, p. 1, 2022.
  34. T. Lu, K. Ding, W. Fu, S. Li, and A. Guo, “Coupled adversarial learning for fusion classification of hyperspectral and lidar data,” Information Fusion, vol. 93, pp. 118–131, 2023.
  35. J. X. Yang, J. Zhou, J. Wang, H. Tian, and W. C. Liew, “Lidar-guided cross-attention fusion for hyperspectral band selection and image classification,” 2024, submitted on 5 April 2024. [Online]. Available: https://arxiv.org/abs/2404.03883
  36. S. Li and H. Qi, “Sparse representation based band selection for hyperspectral images,” in 2011 18th IEEE International Conference on Image Processing, 2011, pp. 2693–2696.
  37. G. Morales, J. Sheppard, R. Logan, and J. Shaw, “Hyperspectral band selection for multispectral image classification with convolutional networks,” in 2021 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2021, pp. 1–8.
  38. W. Sun, J. Peng, G. Yang, and Q. Du, “Fast and latent low-rank subspace clustering for hyperspectral band selection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 6, pp. 3906–3915, 2020.
  39. X. Luo, R. Xue, and J. Yin, “Information-assisted density peak index for hyperspectral band selection,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 10, pp. 1870–1874, 2017.
  40. J.-m. Li and Y.-t. Qian, “Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization,” Journal of Zhejiang University SCIENCE C, vol. 12, no. 7, pp. 542–549, 2011.
  41. B. Xu, X. Li, W. Hou, Y. Wang, and Y. Wei, “A similarity-based ranking method for hyperspectral band selection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 11, pp. 9585–9599, 2021.
  42. X. Li, Y. Liu, Z. Hua, and S. Chen, “An unsupervised band selection method via contrastive learning for hyperspectral images,” Remote Sensing, vol. 15, no. 23, p. 5495, 2023.
  43. M. You, X. Meng, Y. Wang, H. Jin, C. Zhai, and A. Yuan, “Hyperspectral band selection via band grouping and adaptive multi-graph constraint,” Remote Sensing, vol. 14, no. 17, p. 4379, 2022.
  44. M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsupervised learning of visual features by contrasting cluster assignments,” ArXiv, vol. abs/2006.09882, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:219721240
  45. Q. Wang, Q. Li, and X. Li, “Hyperspectral band selection via adaptive subspace partition strategy,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 12, pp. 4940–4950, 2019.
  46. S. Li, Z. Wang, L. Fang, and Q. Li, “An efficient subspace partition method using curve fitting for hyperspectral band selection,” IEEE Geoscience and Remote Sensing Letters, vol. 21, pp. 1–5, 2024.
  47. Z. Dou, K. Gao, X. Zhang, H. Wang, and L. Han, “Band selection of hyperspectral images using attention-based autoencoders,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 1, pp. 147–151, 2020.
  48. Y. Liu, X. Li, Z. Hua, C. Xia, and L. Zhao, “A band selection method with masked convolutional autoencoder for hyperspectral image,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  49. R. Hang, Z. Li, P. Ghamisi, D. Hong, G. Xia, and Q. Liu, “Classification of hyperspectral and LiDAR data using coupled CNNs,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 7, pp. 4939–4950, 2020.
  50. D. Hong, L. Gao, R. Hang, B. Zhang, and J. Chanussot, “Deep encoder-decoder networks for classification of hyperspectral and LiDAR data,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2020.
  51. S. Jia, X. Zhou, S. Jiang, and R. He, “Collaborative contrastive learning for hyperspectral and LiDAR classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–14, 2023.
  52. S. Mohla, S. Pande, B. Banerjee, and S. Chaudhuri, “FusAtNet: Dual attention based spectrospatial multimodal fusion network for hyperspectral and LiDAR classification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 92–93.
  53. Q. Xu, Y. Tang, and Y. She, “Unsupervised multi-branch capsule for hyperspectral and lidar classification,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 12617, 2023, p. 126170A.
  54. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  55. X. Zhou, M. Cui, A. Singhania, and D. Fernández Díaz, Juan Carlos, “Houston 2013 data set,” National Center for Airborne Laser Mapping (NCALM), University of Houston, Jun. 2013, dataset collected over the University of Houston campus and pre-processed with the assistance of the authors. [Online]. Available: https://hyperspectral.ee.uh.edu/?page_id=459
  56. University of Trento, “Theses of the university of trento,” [Data set], 2022, original work published 2020. [Online]. Available: http://data.europa.eu/88u/dataset/theses-of-the-university-of-trento
  57. X. Du and A. Zare, “Technical report: Scene label ground truth map for MUUFL Gulfport data set,” University of Florida, Gainesville, FL, Tech. Rep. 20170417, Apr. 2017, available: http://ufdc.ufl.edu/IR00009711/00001.
  58. S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral image classification,” Neurocomputing, vol. 219, pp. 88–98, 2017.
  59. D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, and B. Zhang, “More diverse means better: Multimodal deep learning meets remote-sensing imagery classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, pp. 4340–4354, 2020.
  60. G. Mercier and M. Lennon, “Support vector machines for hyperspectral image classification with spectral-based kernels,” in IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), vol. 1.   IEEE, 2003, pp. 288–290.

Summary

We haven't generated a summary for this paper yet.