Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatially Correlated RIS-Aided Secure Massive MIMO Under CSI and Hardware Imperfections (2404.05239v1)

Published 8 Apr 2024 in cs.IT and math.IT

Abstract: This paper investigates the integration of a reconfigurable intelligent surface (RIS) into a secure multiuser massive multiple-input multiple-output (MIMO) system in the presence of transceiver hardware impairments (HWI), imperfect channel state information (CSI), and spatially correlated channels. We first introduce a linear minimum-mean-square error estimation algorithm for the aggregate channel by considering the impact of transceiver HWI and RIS phase-shift errors. Then, we derive a lower bound for the achievable ergodic secrecy rate in the presence of a multi-antenna eavesdropper when artificial noise (AN) is employed at the base station (BS). In addition, the obtained expressions of the ergodic secrecy rate are further simplified in some noteworthy special cases to obtain valuable insights. To counteract the effects of HWI, we present a power allocation optimization strategy between the confidential signals and AN, which admits a fixed-point equation solution. Our analysis reveals that a non-zero ergodic secrecy rate is preserved if the total transmit power decreases no faster than $1/N$, where $N$ is the number of RIS elements. Moreover, the ergodic secrecy rate grows logarithmically with the number of BS antennas $M$ and approaches a certain limit in the asymptotic regime $N\rightarrow\infty$. Simulation results are provided to verify the derived analytical results. They reveal the impact of key design parameters on the secrecy rate. It is shown that, with the proposed power allocation strategy, the secrecy rate loss due to HWI can be counteracted by increasing the number of low-cost RIS elements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
  2. E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Found. Trends Signal Process., vol. 11, no. 3, pp. 154–655, Nov. 2017.
  3. W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah, “Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 1, pp. 9–39, Jan. 2023.
  4. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Aug. 2019.
  5. M. Di Renzo, F. H. Danufane, and S. Tretyakov, “Communication models for reconfigurable intelligent surfaces: From surface electromagnetics to wireless networks optimization,” Proc. IEEE, vol. 110, no. 9, pp. 1164–1209, Sep. 2022.
  6. S. Lin, F. Chen, M. Wen, Y. Feng, and M. Di Renzo, “Reconfigurable intelligent surface-aided quadrature reflection modulation for simultaneous passive beamforming and information transfer,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1469–1481, Mar. 2022.
  7. M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2515–2534, Jun. 2008.
  8. A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas-Part II: The MIMOME wiretap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5515–5532, Nov. 2010.
  9. S. Wang, M. Wen, M. Xia, R. Wang, Q. Hao, and Y.-C. Wu, “Angle aware user cooperation for secure massive MIMO in Rician fading channel,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 2182–2196, Sep. 2020.
  10. D. Yang, J. Xu, W. Xu, N. Wang, B. Sheng, and A. L. Swindlehurst, “Secure communication for spatially correlated massive MIMO with low-resolution DACs,” IEEE Wireless Commun. Lett., vol. 10, no. 10, pp. 2120–2124, Oct. 2021.
  11. S. Hong, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface,” IEEE Trans. Commun., vol. 68, no. 12, pp. 7851–7866, Dec. 2020.
  12. X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust and secure wireless communications via intelligent reflecting surfaces,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2637–2652, Nov. 2020.
  13. H. Niu, Z. Chu, F. Zhou, Z. Zhu, M. Zhang, and K.-K. Wong, “Weighted sum secrecy rate maximization using intelligent reflecting surface,” IEEE Trans. Commun., vol. 69, no. 9, pp. 6170–6184, Sep. 2021.
  14. Z. Li, S. Wang, M. Wen, and Y.-C. Wu, “Secure multicast energy-efficiency maximization with massive RISs and uncertain CSI: First-order algorithms and convergence analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6818–6833, Sep. 2022.
  15. P. Xu, G. Chen, G. Pan, and M. Di Renzo, “Ergodic secrecy rate of RIS-assisted communication systems in the presence of discrete phase shifts and multiple eavesdroppers,” IEEE Wireless Commun. Lett., vol. 10, no. 3, pp. 629–633, Mar. 2021.
  16. W. Shi, J. Xu, W. Xu, C. Yuen, A. L. Swindlehurst, and C. Zhao, “On secrecy performance of RIS-assisted MISO systems over Rician channels with spatially random eavesdroppers,” IEEE Trans. Wireless Commun., early access, 2023, doi: 10.1109/TWC.2023.3348591.
  17. X. Zhang and S. Song, “Secrecy analysis for IRS-aided wiretap MIMO communications: Fundamental limits and system design,” IEEE Trans. Inf. Theory, early access, 2023, doi: 10.1109/TIT.2023.3336648.
  18. H. Ren, X. Liu, C. Pan, Z. Peng, and J. Wang, “Performance analysis for RIS-aided secure massive MIMO systems with statistical CSI,” IEEE Wireless Commun. Lett., vol. 12, no. 1, pp. 124–128, Jan. 2023.
  19. D. Yang, J. Xu, W. Xu, Y. Huang, and Z. Lu, “Secure communication for spatially correlated RIS-aided multiuser massive MIMO systems: Analysis and optimization,” IEEE Commun. Lett., vol. 27, no. 3, pp. 797–801, Mar. 2023.
  20. J. K. Dassanayake, D. Gunasinghe, and G. A. A. Baduge, “Secrecy rate analysis and active pilot attack detection for IRS-aided massive MIMO systems,” IEEE Trans. Inf. Forensics Security, early access, 2023, doi: 10.1109/TIFS.2023.3318941.
  21. S. Zhou, W. Xu, K. Wang, M. Di Renzo, and M.-S. Alouini, “Spectral and energy efficiency of IRS-assisted MISO communication with hardware impairments,” IEEE Wireless Commun. Lett., vol. 9, no. 9, pp. 1366–1369, Sep. 2020.
  22. C. Li, M. van Delden, A. Sezgin, T. Musch, and Z. Han, “IRS-assisted MISO system with phase noise: Channel estimation and power scaling laws,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 3927–3941, Jun. 2023.
  23. A. Papazafeiropoulos, C. Pan, P. Kourtessis, S. Chatzinotas, and J. M. Senior, “Intelligent reflecting surface-assisted MU-MISO systems with imperfect hardware: Channel estimation and beamforming design,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 2077–2092, Mar. 2022.
  24. H. Shen, W. Xu, S. Gong, C. Zhao, and D. W. K. Ng, “Beamforming optimization for IRS-aided communications with transceiver hardware impairments,” IEEE Trans. Commun., vol. 69, no. 2, pp. 1214–1227, Oct. 2021.
  25. G. Zhou, C. Pan, H. Ren, K. Wang, and Z. Peng, “Secure wireless communication in RIS-aided MISO system with hardware impairments,” IEEE Wireless Commun. Lett., vol. 10, no. 6, pp. 1309–1313, Mar. 2021.
  26. Z. Peng, R. Weng, C. Pan, G. Zhou, M. Di Renzo, and A. Lee Swindlehurst, “Robust transmission design for RIS-assisted secure multiuser communication systems in the presence of hardware impairments,” IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 7506–7521, Nov. 2023.
  27. A. Salem, K.-K. Wong, and C.-B. Chae, “Impact of phase-shift error on the secrecy performance of uplink RIS communication systems,” IEEE Trans. Wireless Commun., early access, 2023, doi: 10.1109/TWC.2023.3340977.
  28. E. Björnson and L. Sanguinetti, “Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces,” IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 830–834, Apr. 2021.
  29. G. Yang, H. Zhang, Z. Shi, S. Ma, and H. Wang, “Asymptotic outage analysis of spatially correlated Rayleigh MIMO channels,” IEEE Trans. Broadcast., vol. 67, no. 1, pp. 263–278, Mar. 2021.
  30. T. V. Chien, H. Q. Ngo, S. Chatzinotas, M. Di Renzo, and B. Otternsten, “Reconfigurable intelligent surface-assisted Cell-Free Massive MIMO systems over spatially-correlated channels,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 5106–5127, Jul. 2022.
  31. A. L. Moustakas, G. C. Alexandropoulos, and M. Debbah, “Reconfigurable intelligent surfaces and capacity optimization: A large system analysis,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8736–8750, Dec. 2023.
  32. J. Zhu, D. W. K. Ng, N. Wang, R. Schober, and V. K. Bhargava, “Analysis and design of secure massive MIMO systems in the presence of hardware impairments,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 2001–2016, Mar. 2017.
  33. Q. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M.-S. Alouini, “Asymptotic max-min SINR analysis of reconfigurable intelligent surface aided MISO systems,” IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 7748–7764, Dec. 2020.
  34. M.-A. Badiu and J. P. Coon, “Communication through a large reflecting surface with phase errors,” IEEE Wireless Commun. Lett., vol. 9, no 2, pp. 184–188, 2019.
  35. Q. Li, M. Wen, E. Basar, G. C. Alexandropoulos, K. J. Kim, and H. V. Poor, “Channel estimation and multipath diversity reception for RIS-empowered broadband wireless systems based on cyclic-prefixed single-carrier transmission,” IEEE Trans. Wireless Commun., vol. 22, no. 8, pp. 5145–5156, Aug. 2023. 
  36. E. Bjornson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits,” IEEE Trans. Inf. Theory., vol. 60, no. 11, pp. 7112–7139, 2014.
  37. A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684–702, Jun. 2003.
  38. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Aspects of favorable propagation in massive MIMO,” in Proc. Eur. Signal Process. Conf. (EUSIPCO), Lisbon, Portugal, Sep. 2014, pp. 76–80.
  39. J. Zhu and W. Xu, “Securing massive MIMO via power scaling,” IEEE Commun. Lett., vol. 20, no. 5, pp. 1014–1017, May 2016.
  40. J. Xu, W. Xu, J. Zhu, D. W. K. Ng, and A. Lee Swindlehurst, “Secure massive MIMO communication with low-resolution DACs,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3265–3278, May 2019.
  41. Q. T. Zhang and D. P. Liu, “A simple capacity formula for correlated diversity Rician channels,” IEEE Commun. Lett., vol. 6, no. 11, pp. 481–483, Nov. 2002.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com