Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduction of Forgetting by Contextual Variation During Encoding Using 360-Degree Video-Based Immersive Virtual Environments (2404.05007v2)

Published 7 Apr 2024 in cs.HC

Abstract: Recall impairment in a different environmental context from learning is called context-dependent forgetting. Two learning methods have been proposed to prevent context-dependent forgetting: reinstatement and decontextualization. Reinstatement matches the environmental context between learning and retrieval, whereas decontextualization involves repeated learning in various environmental contexts and eliminates the context dependency of memory. Conventionally, these methods have been validated by switching between physical rooms. However, in this study, we use immersive virtual environments (IVEs) as the environmental context assisted by virtual reality (VR), which is known for its low cost and high reproducibility compared to traditional manipulation. Whereas most existing studies using VR have failed to reveal the reinstatement effect, we test its occurrence using a 360-degree video-based IVE with improved familiarity and realism instead of a computer graphics-based IVE. Furthermore, we are the first to address decontextualization using VR. Our experiment showed that repeated learning in the same constant IVE as retrieval did not significantly reduce forgetting compared to repeated learning in different constant IVEs. Conversely, repeated learning in various IVEs significantly reduced forgetting than repeated learning in constant IVEs. These findings contribute to the design of IVEs for VR-based applications, particularly in educational settings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. S. M. Smith and E. Vela, “Environmental context-dependent memory: A review and meta-analysis,” Psychonomic Bulletin & Review, vol. 8, no. 2, pp. 203–220, Jun. 2001.
  2. S. M. Smith, “Effects of environmental context on human memory,” in The SAGE Handbook of Applied Memory, T. J. Perfect and D. S. Lindsay, Eds.   London: SAGE, 2013, pp. 162–182.
  3. D. R. Godden and A. D. Baddeley, “Context-dependent memory in two natural environments: On land and underwater,” British Journal of Psychology, vol. 66, no. 3, pp. 325–331, 1975.
  4. S. M. Smith, A. Glenberg, and R. A. Bjork, “Environmental context and human memory,” Memory & Cognition, vol. 6, no. 4, pp. 342–353, 1978.
  5. S. M. Smith and J. D. Handy, “Effects of varied and constant environmental contexts on acquisition and retention,” Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 40, no. 6, pp. 1582–1593, 2014.
  6. M. J. Wälti, D. G. Woolley, and N. Wenderoth, “Reinstating verbal memories with virtual contexts: Myth or reality?” PLOS ONE, vol. 14, no. 3, pp. 1–20, Mar. 2019.
  7. Y. S. Shin, R. Masís-Obando, N. Keshavarzian, R. Dáve, and K. A. Norman, “Context-dependent memory effects in two immersive virtual reality environments: On Mars and underwater,” Psychonomic Bulletin & Review, vol. 28, no. 2, pp. 574–582, 2021.
  8. P. Watson and S. E. Gaudl, “Walking through virtual doors: A study on the effects of virtual location changes on memory,” in International Conference on Artificial Reality and Telexistence Eurographics Symposium on Virtual Environments, J. Orlosky, D. Reiners, and B. Weyers, Eds.   The Eurographics Association, 2021.
  9. F. Rocabado, J. González Alonso, and J. A. Duñabeitia, “Environment Context Variability and Incidental Word Learning: A Virtual Reality Study,” Brain Sciences, vol. 12, no. 11, p. 1516, Nov. 2022.
  10. N. Reggente, J. K.-Y. Essoe, Z. M. Aghajan, A. V. Tavakoli, J. F. McGuire, N. A. Suthana, and J. Rissman, “Enhancing the ecological validity of fMRI memory research using virtual reality,” Frontiers in Neuroscience, vol. 12, p. 408, 2018.
  11. J. R. J. Neo, A. S. Won, and M. M. Shepley, “Designing immersive virtual environments for human behavior research,” Frontiers in Virtual Reality, vol. 2, p. 603750, 2021.
  12. S. M. Smith and I. Manzano, “Video context-dependent recall,” Behavior Research Methods, vol. 42, no. 1, pp. 292–301, 2010.
  13. C. M. Bird and N. Burgess, “The hippocampus and memory: Insights from spatial processing,” Nature Reviews Neuroscience, vol. 9, no. 3, pp. 182–194, 2008.
  14. S. M. Smith and J. D. Handy, “The crutch of context-dependency: Effects of contextual support and constancy on acquisition and retention,” Memory, vol. 24, no. 8, pp. 1134–1141, 2016.
  15. T. Schubert, F. Friedmann, and H. Regenbrecht, “The experience of presence: Factor analytic insights,” Presence: Teleoperators & Virtual Environments, vol. 10, no. 3, pp. 266–281, 2001.
  16. S. A. Smith and N. W. Mulligan, “Immersion, presence, and episodic memory in virtual reality environments,” Memory, vol. 29, no. 8, pp. 983–1005, 2021.
  17. S. M. Smith, “A comparison of two techniques for reducing context-dependent forgetting,” Memory & Cognition, vol. 12, no. 5, pp. 477–482, 1984.
  18. T. Isarida, T. Sakai, T. Kubota, M. Koga, Y. Katayama, and T. K. Isarida, “Odor-context effects in free recall after a short retention interval: A new methodology for controlling adaptation,” Memory & Cognition, vol. 42, no. 3, pp. 421–433, 2014.
  19. T. K. Isarida, T. Kubota, S. Nakajima, and T. Isarida, “Reexamination of mood-mediation hypothesis of background-music-dependent effects in free recall,” Quarterly Journal of Experimental Psychology, vol. 70, no. 3, pp. 533–543, 2017.
  20. E. Tulving and D. M. Thomson, “Encoding specificity and retrieval processes in episodic memory,” Psychological Review, vol. 80, no. 5, pp. 352–373, 1973.
  21. M. N. Imundo, S. C. Pan, E. L. Bjork, and R. A. Bjork, “Where and how to learn: The interactive benefits of contextual variation, restudying, and retrieval practice for learning,” Quarterly Journal of Experimental Psychology, vol. 74, no. 3, pp. 413–424, 2021.
  22. A. M. Glenberg, “Component-levels theory of the effects of spacing of repetitions on recall and recognition,” Memory & Cognition, vol. 7, no. 2, pp. 95–112, 1979.
  23. G. H. Bower, “Stimulus-sampling theory of encoding variability,” in Coding Processes in Human Memory, A. W. Melton and E. Martin, Eds.   Washington, D. C.: Winston, 1972, pp. 85–123.
  24. R. A. Bjork and E. L. Bjork, “A new theory of disuse and an old theory of stimulus fluctuation,” in From Learning Processes to Cognitive Processes: Essays in Honor of William K. Estes, A. Healy, S. Kosslyn, and R. Shiffrin, Eds.   Hillsdale, NJ: Erlbaum, 1992, vol. 2, pp. 35–67.
  25. T. Isarida and T. K. Isarida, “Effects of simple-and complex-place contexts in the multiple-context paradigm,” The Quarterly Journal of Experimental Psychology, vol. 63, no. 12, pp. 2399–2412, 2010.
  26. T. Isarida, T. K. Isarida, T. Kubota, Y. Yin, I. Sakakibara, and D. Kato, “Facilitation effect of incidental environmental context on the computer screen for paired-associate learning,” Quarterly Journal of Experimental Psychology, vol. 74, no. 9, pp. 1562–1570, 2021.
  27. R. A. Bjork and A. Richardson-Klavehn, “On the puzzling relationship between environmental context and human memory.” in Current Issues in Cognitive Processes: The Tulane Flowerree Symposium on Cognition, C. Izawa, Ed.   Lawrence Erlbaum Associates, Inc, 1989, pp. 313–344.
  28. S. M. Smith, “Environmental context-dependent memory,” in Memory in Context: Context in Memory, G. M. Davies and D. M. Thomson, Eds.   John Wiley & Sons, 1988, pp. 13–34.
  29. S. A. Smith, “Virtual reality in episodic memory research: A review,” Psychonomic Bulletin & Review, vol. 26, no. 4, pp. 1213–1237, 2019.
  30. J. J. Cummings and J. N. Bailenson, “How Immersive Is Enough? A Meta-Analysis of the Effect of Immersive Technology on User Presence,” Media Psychology, vol. 19, no. 2, pp. 272–309, Apr. 2016.
  31. S. Palmisano, R. Mursic, and J. Kim, “Vection and cybersickness generated by head-and-display motion in the Oculus Rift,” Displays, vol. 46, pp. 1–8, Jan. 2017.
  32. R. S. Kennedy, K. M. Stanney, and W. P. Dunlap, “Duration and Exposure to Virtual Environments: Sickness Curves During and Across Sessions,” Presence: Teleoperators and Virtual Environments, vol. 9, no. 5, pp. 463–472, Oct. 2000.
  33. F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner, “G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences,” Behavior Research Methods, vol. 39, no. 2, pp. 175–191, May 2007.
  34. M. Gonzalez-Franco, E. Ofek, Y. Pan, A. Antley, A. Steed, B. Spanlang, A. Maselli, D. Banakou, N. Pelechano, S. Orts-Escolano, V. Orvalho, L. Trutoiu, M. Wojcik, M. V. Sanchez-Vives, J. Bailenson, M. Slater, and J. Lanier, “The Rocketbox Library and the Utility of Freely Available Rigged Avatars,” Frontiers in Virtual Reality, vol. 1, Dec. 2020.
  35. V. Schwind, P. Knierim, L. Chuang, and N. Henze, ““Where’s pinky?”: The effects of a reduced number of fingers in virtual reality,” in Proceedings of the Annual Symposium on Computer-Human Interaction in Play, ser. CHI PLAY ’17.   New York, NY, USA: Association for Computing Machinery, 2017, pp. 507–515.
  36. M. Marini and A. Casile, “I can see my virtual body in a mirror: The role of visual perspective in changing implicit racial attitudes using virtual reality,” Frontiers in Psychology, vol. 13, no. 989582, 2022.
  37. K. Koyanagi, S. Ishikawa, Y. Ohkubo, and E. Ishii, “The Familiarity Values of Japanese Three-Letter Nouns,” The Japanese Journal of Psychology, vol. 30, no. 5, pp. 357–365, 1960.
  38. R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal, “Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness,” The international journal of aviation psychology, vol. 3, no. 3, pp. 203–220, 1993.
  39. M. A. Rupp, J. Kozachuk, J. R. Michaelis, K. L. Odette, J. A. Smither, and D. S. McConnell, “The effects of immersiveness and future VR expectations on subjec-tive-experiences during an educational 360 video,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 60.   SAGE Publications Sage CA: Los Angeles, CA, 2016, pp. 2108–2112.
  40. J. O. Wobbrock, L. Findlater, D. Gergle, and J. J. Higgins, “The aligned rank transform for nonparametric factorial analyses using only anova procedures,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI ’11.   New York, NY, USA: Association for Computing Machinery, 2011, pp. 143—146.
  41. A. Rutherford, “Environmental Context-Dependent Recognition Memory Effects: An Examination of ICE Model and Cue-Overload Hypotheses,” The Quarterly Journal of Experimental Psychology Section A, vol. 57, no. 1, pp. 107–127, Jan. 2004.
  42. T. Isarida and T. K. Isarida, “Effects of environmental context manipulated by the combination of place and task on free recall,” Memory, vol. 12, no. 3, pp. 376–384, 2004.
  43. S. M. Smith, “Enhancement of recall using multiple environmental contexts during learning,” Memory & Cognition, vol. 10, no. 5, pp. 405–412, 1982.
  44. G. A. Radvansky and D. E. Copeland, “Walking through doorways causes forgetting: Situation models and experienced space,” Memory & Cognition, vol. 34, no. 5, pp. 1150–1156, 2006.
  45. S. Sadeghi, R. Daziano, S.-Y. Yoon, and A. K. Anderson, “Affective experience in a virtual crowd regulates perceived travel time,” Virtual Reality, Nov. 2022.
  46. T. Mizuho, T. Amemiya, T. Narumi, and H. Kuzuoka, “Virtual Omnibus Lecture: Investigating the Effects of Varying Lecturer Avatars as Environmental Context on Audience Memory,” in Proceedings of the Augmented Humans International Conference 2023, ser. AHs ’23.   New York, NY, USA: Association for Computing Machinery, Mar. 2023, pp. 55–65.
  47. M. H. Lamers and M. Lanen, “Changing between virtual reality and real-world adversely affects memory recall accuracy,” Frontiers in Virtual Reality, vol. 2, p. 602087, 2021.
  48. T. Mizuho, T. Narumi, and H. Kuzuoka, “Effects of the Visual Fidelity of Virtual Environments on Presence, Context-dependent Forgetting, and Source-monitoring Error,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 5, pp. 2607–2614, May 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com