Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to characterize imprecision in multi-view clustering? (2404.04970v2)

Published 7 Apr 2024 in cs.LG

Abstract: It is still challenging to cluster multi-view data since existing methods can only assign an object to a specific (singleton) cluster when combining different view information. As a result, it fails to characterize imprecision of objects in overlapping regions of different clusters, thus leading to a high risk of errors. In this paper, we thereby want to answer the question: how to characterize imprecision in multi-view clustering? Correspondingly, we propose a multi-view low-rank evidential c-means based on entropy constraint (MvLRECM). The proposed MvLRECM can be considered as a multi-view version of evidential c-means based on the theory of belief functions. In MvLRECM, each object is allowed to belong to different clusters with various degrees of support (masses of belief) to characterize uncertainty when decision-making. Moreover, if an object is in the overlapping region of several singleton clusters, it can be assigned to a meta-cluster, defined as the union of these singleton clusters, to characterize the local imprecision in the result. In addition, entropy-weighting and low-rank constraints are employed to reduce imprecision and improve accuracy. Compared to state-of-the-art methods, the effectiveness of MvLRECM is demonstrated based on several toy and UCI real datasets.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets