Theory of local $\mathbb{Z}_{2}$ topological markers for finite and periodic two-dimensional systems (2404.04598v2)
Abstract: The topological phases of two-dimensional time-reversal symmetric insulators are classified by a $\mathbb{Z}{2}$ topological invariant. Usually, the invariant is introduced and calculated by exploiting the way time-reversal symmetry acts in reciprocal space, hence implicitly assuming periodicity and homogeneity. Here, we introduce two space-resolved $\mathbb{Z}{2}$ topological markers that are able to probe the local topology of the ground-state electronic structure also in the case of inhomogeneous and finite systems. The first approach leads to a generalized local spin-Chern marker, that usually remains well-defined also when the perpendicular component of the spin, $S_{z}$, is not conserved. The second marker is solely based on time-reversal symmetry, hence being more general. We validate our markers on the Kane-Mele model both in periodic and open boundary conditions, also in presence of disorder and including topological/trivial heterojunctions.
- F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).
- C. L. Kane and E. J. Mele, Z22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005a).
- C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005b).
- B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science 314, 1757 (2006).
- T. Thonhauser and D. Vanderbilt, Insulator/Chern-insulator transition in the Haldane model, Phys. Rev. B 74, 235111 (2006).
- A. A. Soluyanov and D. Vanderbilt, Wannier representation of ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topological insulators, Phys. Rev. B 83, 035108 (2011a).
- L. Fu and C. L. Kane, Time reversal polarization and a Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT adiabatic spin pump, Phys. Rev. B 74, 195312 (2006).
- L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76, 045302 (2007).
- D. Ceresoli and R. Resta, Orbital magnetization and Chern number in a supercell framework: Single 𝐤𝐤\mathbf{k}bold_k-point formula, Phys. Rev. B 76, 012405 (2007).
- R. Favata and A. Marrazzo, Single-point spin Chern number in a supercell framework, Electronic Structure 5, 014005 (2023).
- T. A. Loring and M. B. Hastings, Disordered topological insulators via C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras, Europhysics Letters 92, 67004 (2011).
- H. Huang and F. Liu, Theory of spin Bott index for quantum spin Hall states in nonperiodic systems, Phys. Rev. B 98, 125130 (2018a).
- I. C. Fulga, F. Hassler, and A. R. Akhmerov, Scattering theory of topological insulators and superconductors, Phys. Rev. B 85, 165409 (2012).
- J. Avron, R. Seiler, and B. Simon, The Index of a Pair of Projections, Journal of Functional Analysis 120, 220 (1994b).
- H. Katsura and T. Koma, The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors, Journal of Mathematical Physics 59, 031903 (2018).
- R. Bianco and R. Resta, Mapping topological order in coordinate space, Phys. Rev. B 84, 241106(R) (2011).
- U. Gebert, B. Irsigler, and W. Hofstetter, Local Chern marker of smoothly confined Hofstadter fermions, Phys. Rev. A 101, 063606 (2020).
- L. Ulčakar, J. Mravlje, and T. c. v. Rejec, Kibble-Zurek Behavior in Disordered Chern Insulators, Phys. Rev. Lett. 125, 216601 (2020).
- P. d’Ornellas, R. Barnett, and D. K. K. Lee, Quantized bulk conductivity as a local Chern marker, Phys. Rev. B 106, 155124 (2022).
- Q. Marsal, D. Varjas, and A. G. Grushin, Topological Weaire-Thorpe models of amorphous matter, Proceedings of the National Academy of Sciences 117, 30260 (2020).
- W. Kohn, Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms, Phys. Rev. Lett. 76, 3168 (1996).
- B. D. Assunção, G. J. Ferreira, and C. H. Lewenkopf, Phase transitions and scale invariance in topological Anderson insulators (2024), arXiv:2401.03028 [cond-mat.dis-nn] .
- W. Chen, Optical absorption measurement of spin Berry curvature and spin Chern marker, Journal of Physics: Condensed Matter 35, 155601 (2023a).
- Z. Li and R. S. K. Mong, Local formula for the ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT invariant of topological insulators, Phys. Rev. B 100, 205101 (2019).
- A. Cerjan, T. A. Loring, and H. Schulz-Baldes, Local Markers for Crystalline Topology, Phys. Rev. Lett. 132, 073803 (2024).
- N. Baù and A. Marrazzo, Local Chern marker for periodic systems, Phys. Rev. B 109, 014206 (2024).
- W. Chen, Universal topological marker, Phys. Rev. B 107, 045111 (2023b).
- E. Prodan, Robustness of the spin-Chern number, Phys. Rev. B 80, 125327 (2009).
- A. A. Soluyanov and D. Vanderbilt, Computing topological invariants without inversion symmetry, Phys. Rev. B 83, 235401 (2011b).
- A. A. Soluyanov and D. Vanderbilt, Smooth gauge for topological insulators, Phys. Rev. B 85, 115415 (2012).
- J. Bellissard, A. van Elst, and H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect, Journal of Mathematical Physics 35, 5373 (1994).
- E. Prodan, Non-commutative tools for topological insulators, New Journal of Physics 12, 065003 (2010).
- A. Marrazzo and R. Resta, Locality of the anomalous Hall conductivity, Phys. Rev. B 95, 121114(R) (2017).
- R. Resta, Quantum-Mechanical Position Operator in Extended Systems, Phys. Rev. Lett. 80, 1800 (1998).
- I. Souza, J. Íñiguez, and D. Vanderbilt, Dynamics of Berry-phase polarization in time-dependent electric fields, Phys. Rev. B 69, 085106 (2004).
- J. C. Y. Teo, L. Fu, and C. L. Kane, Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbxsubscriptBi1𝑥subscriptSb𝑥\text{Bi}_{1-x}\text{Sb}_{x}Bi start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPT Sb start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT, Phys. Rev. B 78, 045426 (2008).
- T. Rauch, F. Töpler, and I. Mertig, Local spin Hall conductivity, Phys. Rev. B 101, 064206 (2020).
- N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997).
- S. F. Boys, Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another, Rev. Mod. Phys. 32, 296 (1960).
- G. W. Winkler, A. A. Soluyanov, and M. Troyer, Smooth gauge and wannier functions for topological band structures in arbitrary dimensions, Phys. Rev. B 93, 035453 (2016).
- Since the trace of 𝒫𝒫\mathcal{P}caligraphic_P is equal to the number of occupied states Noccsubscript𝑁𝑜𝑐𝑐N_{occ}italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT, this formulation of the spillage is equivalent to the more common expression in terms of the projector onto empty states: Tr[(𝒫−𝒫Θ)2]/(2Nocc)=Tr[𝒫𝒬Θ]/Nocc=Tr[𝒬𝒫Θ]/NoccTrdelimited-[]superscript𝒫subscript𝒫Θ22subscript𝑁𝑜𝑐𝑐Trdelimited-[]𝒫subscript𝒬Θsubscript𝑁𝑜𝑐𝑐Trdelimited-[]𝒬subscript𝒫Θsubscript𝑁𝑜𝑐𝑐\mathrm{Tr}[(\mathcal{P}-\mathcal{P}_{\Theta})^{2}]/(2N_{occ})=\mathrm{Tr}[% \mathcal{P}\mathcal{Q}_{\Theta}]/N_{occ}=\mathrm{Tr}[\mathcal{Q}\mathcal{P}_{% \Theta}]/N_{occ}roman_Tr [ ( caligraphic_P - caligraphic_P start_POSTSUBSCRIPT roman_Θ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] / ( 2 italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT ) = roman_Tr [ caligraphic_P caligraphic_Q start_POSTSUBSCRIPT roman_Θ end_POSTSUBSCRIPT ] / italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT = roman_Tr [ caligraphic_Q caligraphic_P start_POSTSUBSCRIPT roman_Θ end_POSTSUBSCRIPT ] / italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT.
- I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B 65, 035109 (2001).
- P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109, 1492 (1958).
- The StraWBerryPy code package is available at https://strawberrypy.readthedocs.io/en/latest/.
- The TBmodels code package is available at https://tbmodels.greschd.ch/en/latest/index.html.
- The PythTB code package is available at http://www.physics.rutgers.edu/pythtb/about.html.
- H. Huang and F. Liu, Quantum Spin Hall Effect and Spin Bott Index in a Quasicrystal Lattice, Phys. Rev. Lett. 121, 126401 (2018b).