Theory of local $\mathbb{Z}_{2}$ topological markers for finite and periodic two-dimensional systems
Abstract: The topological phases of two-dimensional time-reversal symmetric insulators are classified by a $\mathbb{Z}{2}$ topological invariant. Usually, the invariant is introduced and calculated by exploiting the way time-reversal symmetry acts in reciprocal space, hence implicitly assuming periodicity and homogeneity. Here, we introduce two space-resolved $\mathbb{Z}{2}$ topological markers that are able to probe the local topology of the ground-state electronic structure also in the case of inhomogeneous and finite systems. The first approach leads to a generalized local spin-Chern marker, that usually remains well-defined also when the perpendicular component of the spin, $S_{z}$, is not conserved. The second marker is solely based on time-reversal symmetry, hence being more general. We validate our markers on the Kane-Mele model both in periodic and open boundary conditions, also in presence of disorder and including topological/trivial heterojunctions.
- F.Ā D.Ā M.Ā Haldane,Ā Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the āParity Anomalyā,Ā Phys. Rev. Lett.Ā 61,Ā 2015 (1988).
- C.Ā L.Ā KaneĀ andĀ E.Ā J.Ā Mele,Ā Z22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT Topological Order and the Quantum Spin Hall Effect,Ā Phys. Rev. Lett.Ā 95,Ā 146802 (2005a).
- C.Ā L.Ā KaneĀ andĀ E.Ā J.Ā Mele,Ā Quantum Spin Hall Effect in Graphene,Ā Phys. Rev. Lett.Ā 95,Ā 226801 (2005b).
- B.Ā A.Ā Bernevig, T.Ā L.Ā Hughes,Ā andĀ S.-C.Ā Zhang,Ā Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells,Ā ScienceĀ 314,Ā 1757 (2006).
- T.Ā ThonhauserĀ andĀ D.Ā Vanderbilt,Ā Insulator/Chern-insulator transition in the Haldane model,Ā Phys. Rev. BĀ 74,Ā 235111 (2006).
- A.Ā A.Ā SoluyanovĀ andĀ D.Ā Vanderbilt,Ā Wannier representation of ā¤2subscriptā¤2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topological insulators,Ā Phys. Rev. BĀ 83,Ā 035108 (2011a).
- L.Ā FuĀ andĀ C.Ā L.Ā Kane,Ā Time reversal polarization and a Z2subscriptš2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT adiabatic spin pump,Ā Phys. Rev. BĀ 74,Ā 195312 (2006).
- L.Ā FuĀ andĀ C.Ā L.Ā Kane,Ā Topological insulators with inversion symmetry,Ā Phys. Rev. BĀ 76,Ā 045302 (2007).
- D.Ā CeresoliĀ andĀ R.Ā Resta,Ā Orbital magnetization and Chern number in a supercell framework: Single š¤š¤\mathbf{k}bold_k-point formula,Ā Phys. Rev. BĀ 76,Ā 012405 (2007).
- R.Ā FavataĀ andĀ A.Ā Marrazzo,Ā Single-point spin Chern number in a supercell framework,Ā Electronic StructureĀ 5,Ā 014005 (2023).
- T.Ā A.Ā LoringĀ andĀ M.Ā B.Ā Hastings,Ā Disordered topological insulators via C*superscriptš¶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras,Ā Europhysics LettersĀ 92,Ā 67004 (2011).
- H.Ā HuangĀ andĀ F.Ā Liu,Ā Theory of spin Bott index for quantum spin Hall states in nonperiodic systems,Ā Phys. Rev. BĀ 98,Ā 125130 (2018a).
- I.Ā C.Ā Fulga, F.Ā Hassler,Ā andĀ A.Ā R.Ā Akhmerov,Ā Scattering theory of topological insulators and superconductors,Ā Phys. Rev. BĀ 85,Ā 165409 (2012).
- J.Ā Avron, R.Ā Seiler,Ā andĀ B.Ā Simon,Ā The Index of a Pair of Projections,Ā Journal of Functional AnalysisĀ 120,Ā 220 (1994b).
- H.Ā KatsuraĀ andĀ T.Ā Koma,Ā The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors,Ā Journal of Mathematical PhysicsĀ 59,Ā 031903 (2018).
- R.Ā BiancoĀ andĀ R.Ā Resta,Ā Mapping topological order in coordinate space,Ā Phys. Rev. BĀ 84,Ā 241106(R) (2011).
- U.Ā Gebert, B.Ā Irsigler,Ā andĀ W.Ā Hofstetter,Ā Local Chern marker of smoothly confined Hofstadter fermions,Ā Phys. Rev. AĀ 101,Ā 063606 (2020).
- L.Ā UlÄakar, J.Ā Mravlje,Ā andĀ T.Ā c.Ā v.Ā Rejec,Ā Kibble-Zurek Behavior in Disordered Chern Insulators,Ā Phys. Rev. Lett.Ā 125,Ā 216601 (2020).
- P.Ā dāOrnellas, R.Ā Barnett,Ā andĀ D.Ā K.Ā K.Ā Lee,Ā Quantized bulk conductivity as a local Chern marker,Ā Phys. Rev. BĀ 106,Ā 155124 (2022).
- Q.Ā Marsal, D.Ā Varjas,Ā andĀ A.Ā G.Ā Grushin,Ā Topological Weaire-Thorpe models of amorphous matter,Ā Proceedings of the National Academy of SciencesĀ 117,Ā 30260 (2020).
- W.Ā Kohn,Ā Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms,Ā Phys. Rev. Lett.Ā 76,Ā 3168 (1996).
- B. D. Assunção, G. J. Ferreira, and C. H. Lewenkopf, Phase transitions and scale invariance in topological Anderson insulators (2024), arXiv:2401.03028 [cond-mat.dis-nn] .
- W.Ā Chen,Ā Optical absorption measurement of spin Berry curvature and spin Chern marker,Ā Journal of Physics: Condensed MatterĀ 35,Ā 155601 (2023a).
- Z.Ā LiĀ andĀ R.Ā S.Ā K.Ā Mong,Ā Local formula for the ā¤2subscriptā¤2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT invariant of topological insulators,Ā Phys. Rev. BĀ 100,Ā 205101 (2019).
- A.Ā Cerjan, T.Ā A.Ā Loring,Ā andĀ H.Ā Schulz-Baldes,Ā Local Markers for Crystalline Topology,Ā Phys. Rev. Lett.Ā 132,Ā 073803 (2024).
- N. Baù and A. Marrazzo, Local Chern marker for periodic systems, Phys. Rev. B 109, 014206 (2024).
- W.Ā Chen,Ā Universal topological marker,Ā Phys. Rev. BĀ 107,Ā 045111 (2023b).
- E.Ā Prodan,Ā Robustness of the spin-Chern number,Ā Phys. Rev. BĀ 80,Ā 125327 (2009).
- A.Ā A.Ā SoluyanovĀ andĀ D.Ā Vanderbilt,Ā Computing topological invariants without inversion symmetry,Ā Phys. Rev. BĀ 83,Ā 235401 (2011b).
- A.Ā A.Ā SoluyanovĀ andĀ D.Ā Vanderbilt,Ā Smooth gauge for topological insulators,Ā Phys. Rev. BĀ 85,Ā 115415 (2012).
- J.Ā Bellissard, A.Ā van Elst,Ā andĀ H.Ā Schulz-Baldes,Ā The noncommutative geometry of the quantum Hall effect,Ā Journal of Mathematical PhysicsĀ 35,Ā 5373 (1994).
- E.Ā Prodan,Ā Non-commutative tools for topological insulators,Ā New Journal of PhysicsĀ 12,Ā 065003 (2010).
- A.Ā MarrazzoĀ andĀ R.Ā Resta,Ā Locality of the anomalous Hall conductivity,Ā Phys. Rev. BĀ 95,Ā 121114(R) (2017).
- R.Ā Resta,Ā Quantum-Mechanical Position Operator in Extended Systems,Ā Phys. Rev. Lett.Ā 80,Ā 1800 (1998).
- I.Ā Souza, J.Ā ĆƱiguez,Ā andĀ D.Ā Vanderbilt,Ā Dynamics of Berry-phase polarization in time-dependent electric fields,Ā Phys. Rev. BĀ 69,Ā 085106 (2004).
- J.Ā C.Ā Y.Ā Teo, L.Ā Fu,Ā andĀ C.Ā L.Ā Kane,Ā Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1āxā¢SbxsubscriptBi1š„subscriptSbš„\text{Bi}_{1-x}\text{Sb}_{x}Bi start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPT Sb start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT,Ā Phys. Rev. BĀ 78,Ā 045426 (2008).
- T. Rauch, F. Töpler, and I. Mertig, Local spin Hall conductivity, Phys. Rev. B 101, 064206 (2020).
- N.Ā MarzariĀ andĀ D.Ā Vanderbilt,Ā Maximally localized generalized Wannier functions for composite energy bands,Ā Phys. Rev. BĀ 56,Ā 12847 (1997).
- S.Ā F.Ā Boys,Ā Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another,Ā Rev. Mod. Phys.Ā 32,Ā 296 (1960).
- G.Ā W.Ā Winkler, A.Ā A.Ā Soluyanov,Ā andĀ M.Ā Troyer,Ā Smooth gauge and wannier functions for topological band structures in arbitrary dimensions,Ā Phys. Rev. BĀ 93,Ā 035453 (2016).
- Since the trace of š«š«\mathcal{P}caligraphic_P is equal to the number of occupied states Noā¢cā¢csubscriptššššN_{occ}italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT, this formulation of the spillage is equivalent to the more common expression in terms of the projector onto empty states: Trā¢[(š«āš«Ī)2]/(2ā¢Noā¢cā¢c)=Trā¢[š«ā¢š¬Ī]/Noā¢cā¢c=Trā¢[š¬ā¢š«Ī]/Noā¢cā¢cTrdelimited-[]superscriptš«subscriptš«Ī22subscriptššššTrdelimited-[]š«subscriptš¬ĪsubscriptššššTrdelimited-[]š¬subscriptš«Īsubscriptšššš\mathrm{Tr}[(\mathcal{P}-\mathcal{P}_{\Theta})^{2}]/(2N_{occ})=\mathrm{Tr}[% \mathcal{P}\mathcal{Q}_{\Theta}]/N_{occ}=\mathrm{Tr}[\mathcal{Q}\mathcal{P}_{% \Theta}]/N_{occ}roman_Tr [ ( caligraphic_P - caligraphic_P start_POSTSUBSCRIPT roman_Ī end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] / ( 2 italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT ) = roman_Tr [ caligraphic_P caligraphic_Q start_POSTSUBSCRIPT roman_Ī end_POSTSUBSCRIPT ] / italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT = roman_Tr [ caligraphic_Q caligraphic_P start_POSTSUBSCRIPT roman_Ī end_POSTSUBSCRIPT ] / italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT.
- I.Ā Souza, N.Ā Marzari,Ā andĀ D.Ā Vanderbilt,Ā Maximally localized Wannier functions for entangled energy bands,Ā Phys. Rev. BĀ 65,Ā 035109 (2001).
- P.Ā W.Ā Anderson,Ā Absence of Diffusion in Certain Random Lattices,Ā Phys. Rev.Ā 109,Ā 1492 (1958).
- The StraWBerryPy code package is available at https://strawberrypy.readthedocs.io/en/latest/.
- The TBmodels code package is available at https://tbmodels.greschd.ch/en/latest/index.html.
- The PythTB code package is available at http://www.physics.rutgers.edu/pythtb/about.html.
- H.Ā HuangĀ andĀ F.Ā Liu,Ā Quantum Spin Hall Effect and Spin Bott Index in a Quasicrystal Lattice,Ā Phys. Rev. Lett.Ā 121,Ā 126401 (2018b).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.