Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Theory of local $\mathbb{Z}_{2}$ topological markers for finite and periodic two-dimensional systems (2404.04598v2)

Published 6 Apr 2024 in cond-mat.mes-hall, cond-mat.dis-nn, and cond-mat.mtrl-sci

Abstract: The topological phases of two-dimensional time-reversal symmetric insulators are classified by a $\mathbb{Z}{2}$ topological invariant. Usually, the invariant is introduced and calculated by exploiting the way time-reversal symmetry acts in reciprocal space, hence implicitly assuming periodicity and homogeneity. Here, we introduce two space-resolved $\mathbb{Z}{2}$ topological markers that are able to probe the local topology of the ground-state electronic structure also in the case of inhomogeneous and finite systems. The first approach leads to a generalized local spin-Chern marker, that usually remains well-defined also when the perpendicular component of the spin, $S_{z}$, is not conserved. The second marker is solely based on time-reversal symmetry, hence being more general. We validate our markers on the Kane-Mele model both in periodic and open boundary conditions, also in presence of disorder and including topological/trivial heterojunctions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).
  2. C. L. Kane and E. J. Mele, Z22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005a).
  3. C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005b).
  4. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science 314, 1757 (2006).
  5. T. Thonhauser and D. Vanderbilt, Insulator/Chern-insulator transition in the Haldane model, Phys. Rev. B 74, 235111 (2006).
  6. A. A. Soluyanov and D. Vanderbilt, Wannier representation of ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topological insulators, Phys. Rev. B 83, 035108 (2011a).
  7. L. Fu and C. L. Kane, Time reversal polarization and a Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT adiabatic spin pump, Phys. Rev. B 74, 195312 (2006).
  8. L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76, 045302 (2007).
  9. D. Ceresoli and R. Resta, Orbital magnetization and Chern number in a supercell framework: Single 𝐤𝐤\mathbf{k}bold_k-point formula, Phys. Rev. B 76, 012405 (2007).
  10. R. Favata and A. Marrazzo, Single-point spin Chern number in a supercell framework, Electronic Structure 5, 014005 (2023).
  11. T. A. Loring and M. B. Hastings, Disordered topological insulators via C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras, Europhysics Letters 92, 67004 (2011).
  12. H. Huang and F. Liu, Theory of spin Bott index for quantum spin Hall states in nonperiodic systems, Phys. Rev. B 98, 125130 (2018a).
  13. I. C. Fulga, F. Hassler, and A. R. Akhmerov, Scattering theory of topological insulators and superconductors, Phys. Rev. B 85, 165409 (2012).
  14. J. Avron, R. Seiler, and B. Simon, The Index of a Pair of Projections, Journal of Functional Analysis 120, 220 (1994b).
  15. H. Katsura and T. Koma, The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors, Journal of Mathematical Physics 59, 031903 (2018).
  16. R. Bianco and R. Resta, Mapping topological order in coordinate space, Phys. Rev. B 84, 241106(R) (2011).
  17. U. Gebert, B. Irsigler, and W. Hofstetter, Local Chern marker of smoothly confined Hofstadter fermions, Phys. Rev. A 101, 063606 (2020).
  18. L. Ulčakar, J. Mravlje, and T. c. v. Rejec, Kibble-Zurek Behavior in Disordered Chern Insulators, Phys. Rev. Lett. 125, 216601 (2020).
  19. P. d’Ornellas, R. Barnett, and D. K. K. Lee, Quantized bulk conductivity as a local Chern marker, Phys. Rev. B 106, 155124 (2022).
  20. Q. Marsal, D. Varjas, and A. G. Grushin, Topological Weaire-Thorpe models of amorphous matter, Proceedings of the National Academy of Sciences 117, 30260 (2020).
  21. W. Kohn, Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms, Phys. Rev. Lett. 76, 3168 (1996).
  22. B. D. Assunção, G. J. Ferreira, and C. H. Lewenkopf, Phase transitions and scale invariance in topological Anderson insulators (2024), arXiv:2401.03028 [cond-mat.dis-nn] .
  23. W. Chen, Optical absorption measurement of spin Berry curvature and spin Chern marker, Journal of Physics: Condensed Matter 35, 155601 (2023a).
  24. Z. Li and R. S. K. Mong, Local formula for the ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT invariant of topological insulators, Phys. Rev. B 100, 205101 (2019).
  25. A. Cerjan, T. A. Loring, and H. Schulz-Baldes, Local Markers for Crystalline Topology, Phys. Rev. Lett. 132, 073803 (2024).
  26. N. Baù and A. Marrazzo, Local Chern marker for periodic systems, Phys. Rev. B 109, 014206 (2024).
  27. W. Chen, Universal topological marker, Phys. Rev. B 107, 045111 (2023b).
  28. E. Prodan, Robustness of the spin-Chern number, Phys. Rev. B 80, 125327 (2009).
  29. A. A. Soluyanov and D. Vanderbilt, Computing topological invariants without inversion symmetry, Phys. Rev. B 83, 235401 (2011b).
  30. A. A. Soluyanov and D. Vanderbilt, Smooth gauge for topological insulators, Phys. Rev. B 85, 115415 (2012).
  31. J. Bellissard, A. van Elst, and H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect, Journal of Mathematical Physics 35, 5373 (1994).
  32. E. Prodan, Non-commutative tools for topological insulators, New Journal of Physics 12, 065003 (2010).
  33. A. Marrazzo and R. Resta, Locality of the anomalous Hall conductivity, Phys. Rev. B 95, 121114(R) (2017).
  34. R. Resta, Quantum-Mechanical Position Operator in Extended Systems, Phys. Rev. Lett. 80, 1800 (1998).
  35. I. Souza, J. Íñiguez, and D. Vanderbilt, Dynamics of Berry-phase polarization in time-dependent electric fields, Phys. Rev. B 69, 085106 (2004).
  36. J. C. Y. Teo, L. Fu, and C. L. Kane, Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−x⁢SbxsubscriptBi1𝑥subscriptSb𝑥\text{Bi}_{1-x}\text{Sb}_{x}Bi start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPT Sb start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT, Phys. Rev. B 78, 045426 (2008).
  37. T. Rauch, F. Töpler, and I. Mertig, Local spin Hall conductivity, Phys. Rev. B 101, 064206 (2020).
  38. N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997).
  39. S. F. Boys, Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another, Rev. Mod. Phys. 32, 296 (1960).
  40. G. W. Winkler, A. A. Soluyanov, and M. Troyer, Smooth gauge and wannier functions for topological band structures in arbitrary dimensions, Phys. Rev. B 93, 035453 (2016).
  41. Since the trace of 𝒫𝒫\mathcal{P}caligraphic_P is equal to the number of occupied states No⁢c⁢csubscript𝑁𝑜𝑐𝑐N_{occ}italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT, this formulation of the spillage is equivalent to the more common expression in terms of the projector onto empty states: Tr⁢[(𝒫−𝒫Θ)2]/(2⁢No⁢c⁢c)=Tr⁢[𝒫⁢𝒬Θ]/No⁢c⁢c=Tr⁢[𝒬⁢𝒫Θ]/No⁢c⁢cTrdelimited-[]superscript𝒫subscript𝒫Θ22subscript𝑁𝑜𝑐𝑐Trdelimited-[]𝒫subscript𝒬Θsubscript𝑁𝑜𝑐𝑐Trdelimited-[]𝒬subscript𝒫Θsubscript𝑁𝑜𝑐𝑐\mathrm{Tr}[(\mathcal{P}-\mathcal{P}_{\Theta})^{2}]/(2N_{occ})=\mathrm{Tr}[% \mathcal{P}\mathcal{Q}_{\Theta}]/N_{occ}=\mathrm{Tr}[\mathcal{Q}\mathcal{P}_{% \Theta}]/N_{occ}roman_Tr [ ( caligraphic_P - caligraphic_P start_POSTSUBSCRIPT roman_Θ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] / ( 2 italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT ) = roman_Tr [ caligraphic_P caligraphic_Q start_POSTSUBSCRIPT roman_Θ end_POSTSUBSCRIPT ] / italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT = roman_Tr [ caligraphic_Q caligraphic_P start_POSTSUBSCRIPT roman_Θ end_POSTSUBSCRIPT ] / italic_N start_POSTSUBSCRIPT italic_o italic_c italic_c end_POSTSUBSCRIPT.
  42. I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B 65, 035109 (2001).
  43. P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109, 1492 (1958).
  44. The StraWBerryPy code package is available at https://strawberrypy.readthedocs.io/en/latest/.
  45. The TBmodels code package is available at https://tbmodels.greschd.ch/en/latest/index.html.
  46. The PythTB code package is available at http://www.physics.rutgers.edu/pythtb/about.html.
  47. H. Huang and F. Liu, Quantum Spin Hall Effect and Spin Bott Index in a Quasicrystal Lattice, Phys. Rev. Lett. 121, 126401 (2018b).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com