Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing IoT Intelligence: A Transformer-based Reinforcement Learning Methodology (2404.04205v1)

Published 5 Apr 2024 in cs.LG and cs.AI

Abstract: The proliferation of the Internet of Things (IoT) has led to an explosion of data generated by interconnected devices, presenting both opportunities and challenges for intelligent decision-making in complex environments. Traditional Reinforcement Learning (RL) approaches often struggle to fully harness this data due to their limited ability to process and interpret the intricate patterns and dependencies inherent in IoT applications. This paper introduces a novel framework that integrates transformer architectures with Proximal Policy Optimization (PPO) to address these challenges. By leveraging the self-attention mechanism of transformers, our approach enhances RL agents' capacity for understanding and acting within dynamic IoT environments, leading to improved decision-making processes. We demonstrate the effectiveness of our method across various IoT scenarios, from smart home automation to industrial control systems, showing marked improvements in decision-making efficiency and adaptability. Our contributions include a detailed exploration of the transformer's role in processing heterogeneous IoT data, a comprehensive evaluation of the framework's performance in diverse environments, and a benchmark against traditional RL methods. The results indicate significant advancements in enabling RL agents to navigate the complexities of IoT ecosystems, highlighting the potential of our approach to revolutionize intelligent automation and decision-making in the IoT landscape.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. S. Islam, H. Elmekki, A. Elsebai, J. Bentahar, N. Drawel, G. Rjoub, and W. Pedrycz, “A comprehensive survey on applications of transformers for deep learning tasks,” Expert Systems with Applications, p. 122666, 2023.
  2. R. Kozik, M. Pawlicki, and M. Choraś, “A new method of hybrid time window embedding with transformer-based traffic data classification in iot-networked environment,” Pattern Analysis and Applications, vol. 24, no. 4, pp. 1441–1449, 2021.
  3. G. Rjoub, J. Bentahar, O. A. Wahab, R. Mizouni, A. Song, R. Cohen, H. Otrok, and A. Mourad, “A survey on explainable artificial intelligence for cybersecurity,” IEEE Transactions on Network and Service Management, 2023.
  4. G. Rjoub, O. A. Wahab, J. Bentahar, and A. S. Bataineh, “Improving autonomous vehicles safety in snow weather using federated yolo cnn learning,” in International Conference on Mobile Web and Intelligent Information Systems.   Springer, 2021, pp. 121–134.
  5. S. Reza, M. C. Ferreira, J. J. M. Machado, and J. M. R. Tavares, “A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks,” Expert Systems with Applications, vol. 202, p. 117275, 2022.
  6. G. Rjoub, O. A. Wahab, J. Bentahar, and A. Bataineh, “Trust-driven reinforcement selection strategy for federated learning on iot devices,” Computing, pp. 1–23, 2022.
  7. M. Wen, J. Kuba, R. Lin, W. Zhang, Y. Wen, J. Wang, and Y. Yang, “Multi-agent reinforcement learning is a sequence modeling problem,” Advances in Neural Information Processing Systems, vol. 35, pp. 16 509–16 521, 2022.
  8. Y. Wang, H. He, and C. Sun, “Learning to navigate through complex dynamic environment with modular deep reinforcement learning,” IEEE Transactions on Games, vol. 10, no. 4, pp. 400–412, 2018.
  9. P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu et al., “Learning to navigate in complex environments,” arXiv preprint arXiv:1611.03673, 2016.
  10. J. Zeng, R. Ju, L. Qin, Y. Hu, Q. Yin, and C. Hu, “Navigation in unknown dynamic environments based on deep reinforcement learning,” Sensors, vol. 19, no. 18, p. 3837, 2019.
  11. X. Lei, Z. Zhang, and P. Dong, “Dynamic path planning of unknown environment based on deep reinforcement learning,” Journal of Robotics, vol. 2018, 2018.
  12. S.-Y. Chen, Y. Yu, Q. Da, J. Tan, H.-K. Huang, and H.-H. Tang, “Stabilizing reinforcement learning in dynamic environment with application to online recommendation,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 1187–1196.
  13. V. Radhakrishna, G. R. Kumar, P. V. Kumar, and V. Janaki, “A machine learning approach for imputation and anomaly detection in iot environment,” Expert Syst. J. Knowl. Eng., vol. 37, no. 5, 2020. [Online]. Available: https://doi.org/10.1111/exsy.12556
  14. B. Yong, W. Wei, K. Li, J. Shen, Q. Zhou, M. Wozniak, D. Polap, and R. Damasevicius, “Ensemble machine learning approaches for webshell detection in internet of things environments,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 6, 2022. [Online]. Available: https://doi.org/10.1002/ett.4085
  15. I. Cvitić, D. Peraković, M. Periša, and B. Gupta, “Ensemble machine learning approach for classification of iot devices in smart home,” International Journal of Machine Learning and Cybernetics, vol. 12, no. 11, pp. 3179–3202, 2021.
  16. E. Adi, A. Anwar, Z. Baig, and S. Zeadally, “Machine learning and data analytics for the iot,” Neural computing and applications, vol. 32, pp. 16 205–16 233, 2020.
  17. M. Ruta, F. Scioscia, G. Loseto, A. Pinto, and E. Di Sciascio, “Machine learning in the internet of things: A semantic-enhanced approach,” Semantic Web, vol. 10, no. 1, pp. 183–204, 2019.
  18. E. Parisotto, F. Song, J. Rae, R. Pascanu, C. Gulcehre, S. Jayakumar, M. Jaderberg, R. L. Kaufman, A. Clark, S. Noury, M. Botvinick, N. Heess, and R. Hadsell, “Stabilizing transformers for reinforcement learning,” in Proceedings of the 37th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119.   PMLR, 2020, pp. 7487–7498. [Online]. Available: https://proceedings.mlr.press/v119/parisotto20a.html
  19. L. C. Melo, “Transformers are meta-reinforcement learners,” in Proceedings of the 39th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., vol. 162.   PMLR, 2022, pp. 15 340–15 359. [Online]. Available: https://proceedings.mlr.press/v162/melo22a.html
  20. Z. Wu, Z. Liu, J. Lin, Y. Lin, and S. Han, “Lite transformer with long-short range attention.” arXiv preprint arXiv:2004.11886, 2020.
  21. G. Rjoub, J. Bentahar, and O. A. Wahab, “Bigtrustscheduling: Trust-aware big data task scheduling approach in cloud computing environments,” Future Generation Computer Systems, vol. 110, pp. 1079–1097, 2020.
  22. Rjoub, Gaith and Bentahar, Jamal and Wahab, Omar Abdel, “Explainable trust-aware selection of autonomous vehicles using lime for one-shot federated learning,” in 2023 International Wireless Communications and Mobile Computing (IWCMC).   IEEE, 2023, pp. 524–529.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets