Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistically Informed Robot Object Search with Multiple Regions (2404.04186v1)

Published 5 Apr 2024 in cs.RO

Abstract: The increasing use of autonomous robot systems in hazardous environments underscores the need for efficient search and rescue operations. Despite significant advancements, existing literature on object search often falls short in overcoming the difficulty of long planning horizons and dealing with sensor limitations, such as noise. This study introduces a novel approach that formulates the search problem as a belief Markov decision processes with options (BMDP-O) to make Monte Carlo tree search (MCTS) a viable tool for overcoming these challenges in large scale environments. The proposed formulation incorporates sequences of actions (options) to move between regions of interest, enabling the algorithm to efficiently scale to large environments. This approach also enables the use of customizable fields of view, for use with multiple types of sensors. Experimental results demonstrate the superiority of this approach in large environments when compared to the problem without options and alternative tools such as receding horizon planners. Given compute time for the proposed formulation is relatively high, a further approximated "lite" formulation is proposed. The lite formulation finds objects in a comparable number of steps with faster computation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. M. Bernard, K. Kondak, I. Maza, and A. Ollero, “Autonomous transportation and deployment with aerial robots for search and rescue missions,” Journal of Field Robotics, vol. 28, no. 6, pp. 914–931, 2011.
  2. P. Zuzánek, K. Zimmermann, and V. Hlaváč, “Accepted autonomy for search and rescue robotics,” in Modelling and Simulation for Autonomous Systems: First International Workshop, MESAS 2014, Rome, Italy, May 5-6, 2014, Revised Selected Papers 1.   Springer, 2014, pp. 231–240.
  3. A. W. Ko and H. Y. Lau, “Intelligent robot-assisted humanitarian search and rescue system,” International Journal of Advanced Robotic Systems, vol. 6, no. 2, p. 12, 2009.
  4. Y. Zhang, G. Tian, J. Lu, M. Zhang, and S. Zhang, “Efficient dynamic object search in home environment by mobile robot: A priori knowledge-based approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 10, pp. 9466–9477, 2019.
  5. D. Joho, M. Senk, and W. Burgard, “Learning search heuristics for finding objects in structured environments,” Robotics and Autonomous Systems, vol. 59, no. 5, pp. 319–328, 2011.
  6. A. Aydemir, K. Sjöö, J. Folkesson, A. Pronobis, and P. Jensfelt, “Search in the real world: Active visual object search based on spatial relations,” in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 2818–2824.
  7. D. Silver and J. Veness, “Monte-carlo planning in large pomdps,” Advances in neural information processing systems, vol. 23, 2010.
  8. C. Meister, T. Vieira, and R. Cotterell, “Best-first beam search,” Transactions of the Association for Computational Linguistics, vol. 8, pp. 795–809, 2020.
  9. A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding horizon ”next-best-view” planner for 3d exploration,” 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1462–1468, 2016.
  10. G. Viswanathan, V. Afanasyev, S. V. Buldyrev, S. Havlin, M. Da Luz, E. Raposo, and H. E. Stanley, “Lévy flights in random searches,” Physica A: Statistical Mechanics and its Applications, vol. 282, no. 1-2, pp. 1–12, 2000.
  11. H. Kurniawati, Y. Du, D. Hsu, and W. S. Lee, “Motion planning under uncertainty for robotic tasks with long time horizons,” The International Journal of Robotics Research, vol. 30, pp. 308 – 323, 2010.
  12. S.-K. Kim, R. Thakker, and A.-A. Agha-Mohammadi, “Bi-directional value learning for risk-aware planning under uncertainty,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2493–2500, 2019.
  13. N. Bredeche, Y. Chevaleyre, and L. Hugues, “Wrapper for object detection in an autonomous mobile robot,” in 2002 International Conference on Pattern Recognition, vol. 2, 2002, pp. 749–752 vol.2.
  14. J. Kim, C.-H. Lee, Y. Lim, S. Kwon, and C.-H. Park, “Optical sensor-based object detection for autonomous robots,” 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 746–752, 2011.
  15. I. Lazarevich, M. Grimaldi, R. Kumar, S. Mitra, S. Khan, and S. Sah, “Yolobench: Benchmarking efficient object detectors on embedded systems,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 1169–1178.
  16. T. H. Chung and J. W. Burdick, “Analysis of search decision making using probabilistic search strategies,” IEEE Transactions on Robotics, vol. 28, no. 1, pp. 132–144, 2011.
  17. A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch, “Optimization approaches for civil applications of unmanned aerial vehicles (uavs) or aerial drones: A survey,” Networks, vol. 72, no. 4, pp. 411–458, 2018.
  18. L. D. Stone, “Or forum—what’s happened in search theory since the 1975 lanchester prize?” Operations Research, vol. 37, no. 3, pp. 501–506, 1989.
  19. B. O. Koopman, “The theory of search: Iii. the optimum distribution of searching effort,” Operations research, vol. 5, no. 5, pp. 613–626, 1957.
  20. B. Kriheli, E. Levner, A. Spivak et al., “Optimal search for hidden targets by unmanned aerial vehicles under imperfect inspections,” American Journal of Operations Research, vol. 6, no. 02, p. 153, 2016.
  21. J. Hu, L. Xie, J. Xu, and Z. Xu, “Multi-agent cooperative target search,” Sensors, vol. 14, no. 6, pp. 9408–9428, 2014.
  22. M. A. A. El-Hadidy, “On maximum discounted effort reward search problem,” Asia-Pacific Journal of Operational Research, vol. 33, no. 03, p. 1650019, 2016.
  23. D. Assaf and S. Zamir, “Optimal sequential search: a bayesian approach,” The Annals of Statistics, vol. 13, no. 3, pp. 1213–1221, 1985.
  24. H. Sato and J. O. Royset, “Path optimization for the resource-constrained searcher,” Naval Research Logistics (NRL), vol. 57, no. 5, pp. 422–440, 2010.
  25. A. R. Washburn, “Branch and bound methods for a search problem,” Naval Research Logistics (NRL), vol. 45, no. 3, pp. 243–257, 1998.
  26. S. You, M. Diao, and L. Gao, “Deep reinforcement learning for target searching in cognitive electronic warfare,” IEEE Access, vol. 7, pp. 37 432–37 447, 2019.
  27. J. K. Li, D. Hsu, and W. S. Lee, “Act to see and see to act: Pomdp planning for objects search in clutter. in 2016 ieee,” in RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5701–5707.
  28. Y. Chen and H. Kurniawati, “Pomdp planning for object search in partially unknown environment,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  29. Y. Gu, J. Strader, N. Ohi, S. Harper, K. Lassak, C. Yang, L. Kogan, B. Hu, M. Gramlich, R. Kavi et al., “Robot foraging: Autonomous sample return in a large outdoor environment,” IEEE Robotics & Automation Magazine, vol. 25, no. 3, pp. 93–101, 2018.
  30. M. T. Spaan, “Partially observable markov decision processes,” in Reinforcement learning: State-of-the-art.   Springer, 2012, pp. 387–414.
  31. G. D. Konidaris and A. G. Barto, “Building portable options: Skill transfer in reinforcement learning.” in Ijcai, vol. 7, 2007, pp. 895–900.
  32. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  33. A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J. Er, W. Ding, and C.-T. Lin, “A review of clustering techniques and developments,” Neurocomputing, vol. 267, pp. 664–681, 2017.
  34. scikit image, “Watershed segmentation,” https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_watershed.html, [Accessed 15-03-2024].
  35. C. D. Rosin, “Multi-armed bandits with episode context,” Annals of Mathematics and Artificial Intelligence, vol. 61, no. 3, pp. 203–230, 2011.
  36. Z. Sunberg and M. Kochenderfer, “Online algorithms for pomdps with continuous state, action, and observation spaces,” in Proceedings of the International Conference on Automated Planning and Scheduling, vol. 28, 2018, pp. 259–263.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com