Thermal Area Law in Long-Range Interacting Systems (2404.04172v2)
Abstract: The area law of the bipartite information measure characterizes one of the most fundamental aspects of quantum many-body physics. In thermal equilibrium, the area law for the mutual information universally holds at arbitrary temperatures as long as the systems have short-range interactions. In systems with power-law decaying interactions, $r{-\alpha}$ ($r$: distance), conditions for the thermal area law are elusive. In this work, we aim to clarify the optimal condition $\alpha> \alpha_c$ such that the thermal area law universally holds. A standard approach to considering the conditions is to focus on the magnitude of the boundary interaction between two subsystems. However, we find here that the thermal area law is more robust than this conventional argument suggests. We show the optimal threshold for the thermal area law by $\alpha_c= (D+1)/2$ ($D$: the spatial dimension of the lattice), assuming a power-law decay of the clustering for the bipartite correlations. Remarkably, this condition encompasses even the thermodynamically unstable regimes $\alpha < D$. We verify this condition numerically, finding that it is qualitatively accurate for both integrable and non-integrable systems. Unconditional proof of the thermal area law is possible by developing the power-law clustering theorem for $\alpha > D$ above a threshold temperature. Furthermore, the numerical calculation for the logarithmic negativity shows that the same criterion $\alpha > (D+1)/2$ applies to the thermal area law for quantum entanglement.
- A. Kitaev and J. Preskill, Topological Entanglement Entropy, Phys. Rev. Lett. 96, 110404 (2006).
- M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96, 110405 (2006).
- J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
- D. Gioev and I. Klich, Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture, Phys. Rev. Lett. 96, 100503 (2006).
- M. B. Hastings, An area law for one-dimensional quantum systems, Journal of Statistical Mechanics: Theory and Experiment 2007, P08024 (2007).
- L. Masanes, Area law for the entropy of low-energy states, Phys. Rev. A 80, 052104 (2009).
- I. Arad, Z. Landau, and U. Vazirani, Improved one-dimensional area law for frustration-free systems, Phys. Rev. B 85, 195145 (2012).
- F. G. Brandão and M. Horodecki, An area law for entanglement from exponential decay of correlations, Nature Physics 9, 721 (2013).
- T. Kuwahara and K. Saito, Area law of noncritical ground states in 1D long-range interacting systems, Nature Communications 11, 4478 (2020a).
- Z. Landau, U. Vazirani, and T. Vidick, A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians, Nature Physics 11, 566 (2015).
- T. Kuwahara, A. M. Alhambra, and A. Anshu, Improved Thermal Area Law and Quasilinear Time Algorithm for Quantum Gibbs States, Phys. Rev. X 11, 011047 (2021).
- M. Lemm and O. Siebert, Thermal Area Law for Lattice Bosons, Quantum 7, 1083 (2023).
- T. Kuwahara and K. Saito, Exponential clustering of bipartite quantum entanglement at arbitrary temperatures, Physical Review X 12, 021022 (2022).
- T. Koffel, M. Lewenstein, and L. Tagliacozzo, Entanglement Entropy for the Long-Range Ising Chain in a Transverse Field, Phys. Rev. Lett. 109, 267203 (2012).
- V. K. Kozin and O. Kyriienko, Quantum time crystals from hamiltonians with long-range interactions, Phys. Rev. Lett. 123, 210602 (2019).
- T. Kuwahara and K. Saito, Strictly Linear Light Cones in Long-Range Interacting Systems of Arbitrary Dimensions, Phys. Rev. X 10, 031010 (2020b).
- S. Tamaki and K. Saito, Energy current correlation in solvable long-range interacting systems, Physical Review E 101, 042118 (2020).
- F. J. Dyson, Existence of a phase-transition in a one-dimensional ising ferromagnet, Communications in Mathematical Physics 12, 91 (1969).
- J. M. Kosterlitz, Phase transitions in long-range ferromagnetic chains, Phys. Rev. Lett. 37, 1577 (1976).
- H. Araki, On uniqueness of KMS states of one-dimensional quantum lattice systems, Communications in Mathematical Physics 44, 1 (1975).
- A. Kishimoto, On uniqueness of KMS states of one-dimensional quantum lattice systems, Communications in Mathematical Physics 47, 167 (1976).
- M. J. Kastoryano and F. G. S. L. Brandão, Quantum Gibbs Samplers: The Commuting Case, Communications in Mathematical Physics 344, 915 (2016).
- F. G. S. L. Brandão and M. J. Kastoryano, Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States, Communications in Mathematical Physics 365, 1 (2019).
- F. G. Brandao and M. Cramer, Equivalence of statistical mechanical ensembles for non-critical quantum systems, arXiv preprint arXiv:1502.03263 (2015), arXiv:1502.03263 .
- T. Kuwahara and K. Saito, Eigenstate Thermalization from the Clustering Property of Correlation, Phys. Rev. Lett. 124, 200604 (2020c).
- H. Shapourian, K. Shiozaki, and S. Ryu, Partial time-reversal transformation and entanglement negativity in fermionic systems, Phys. Rev. B 95, 165101 (2017).
- Supplementary material .
- H. Araki, Gibbs states of a one dimensional quantum lattice, Communications in Mathematical Physics 14, 120 (1969).
- Y. Kimura and T. Kuwahara, Clustering theorem in 1d long-range interacting systems at arbitrary temperatures (2024), arXiv:2403.11431 [quant-ph] .
- J. I. Latorre and A. Riera, A short review on entanglement in quantum spin systems, Journal of Physics A: Mathematical and Theoretical 42, 504002 (2009).
- A. Sen, S. Nandy, and K. Sengupta, Entanglement generation in periodically driven integrable systems: Dynamical phase transitions and steady state, Phys. Rev. B 94, 214301 (2016).
- M. Žnidarič, T. c. v. Prosen, and I. Pižorn, Complexity of thermal states in quantum spin chains, Phys. Rev. A 78, 022103 (2008).
- H. Bernigau, M. J. Kastoryano, and J. Eisert, Mutual information area laws for thermal free fermions, Journal of Statistical Mechanics: Theory and Experiment 2015, P02008 (2015).
- T. Barthel, One-dimensional quantum systems at finite temperatures can be simulated efficiently on classical computers, arXiv preprint arXiv:1708.09349 (2017), arXiv:1708.09349 .
- A. Weichselbaum, Non-abelian symmetries in tensor networks: A quantum symmetry space approach, Annals of Physics 327, 2972 (2012).
- A. Weichselbaum, X-symbols for non-Abelian symmetries in tensor networks, Phys. Rev. Research 2, 023385 (2020).
- We implement SU(2)SU2\mathrm{SU}(2)roman_SU ( 2 ) spin symmetry of Eq. (10) with the tensor library QSpace. We set the bond dimensions of the matrix product operator (MPO) to 210 for Fig. 3(a) and 120 for Fig. 3(b). These bond dimensions are associated with the 210 and 120 SU(2)SU2\mathrm{SU}(2)roman_SU ( 2 ) multiplets, which are roughly equivalent to 850850850850 and 450450450450 states.
- T. Kuwahara, K. Kato, and F. G. S. L. Brandão, Clustering of Conditional Mutual Information for Quantum Gibbs States above a Threshold Temperature, Phys. Rev. Lett. 124, 220601 (2020).
- T. Kuwahara and K. Saito, Gaussian concentration bound and Ensemble equivalence in generic quantum many-body systems including long-range interactions, Annals of Physics 421, 168278 (2020d).