Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning-Aided Cooperative Localization under Dense Urban Environment (2404.04096v1)

Published 5 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: Future wireless network technology provides automobiles with the connectivity feature to consolidate the concept of vehicular networks that collaborate on conducting cooperative driving tasks. The full potential of connected vehicles, which promises road safety and quality driving experience, can be leveraged if machine learning models guarantee the robustness in performing core functions including localization and controls. Location awareness, in particular, lends itself to the deployment of location-specific services and the improvement of the operation performance. The localization entails direct communication to the network infrastructure, and the resulting centralized positioning solutions readily become intractable as the network scales up. As an alternative to the centralized solutions, this article addresses decentralized principle of vehicular localization reinforced by machine learning techniques in dense urban environments with frequent inaccessibility to reliable measurement. As such, the collaboration of multiple vehicles enhances the positioning performance of machine learning approaches. A virtual testbed is developed to validate this machine learning model for real-map vehicular networks. Numerical results demonstrate universal feasibility of cooperative localization, in particular, for dense urban area configurations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. R. Hussain and S. Zeadally, “Autonomous cars: Research results, issues, and future challenges,” IEEE Commun. Surveys Tuts., vol. 21, no. 2, pp. 1275–1313, 2019.
  2. N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected vehicles: Solutions and challenges,” IEEE Internet Things J., vol. 1, no. 4, pp. 289–299, 2014.
  3. S. V. Balkus, H. Wang, B. D. Cornet, C. Mahabal, H. Ngo, and H. Fang, “A survey of collaborative machine learning using 5g vehicular communications,” IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 1280–1303, 2022.
  4. E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driving: Common practices and emerging technologies,” IEEE Access, vol. 8, pp. 58443–58469, 2020.
  5. S. Safavi, U. A. Khan, S. Kar, and J. M. F. Moura, “Distributed localization: A linear theory,” Proc. IEEE, vol. 106, no. 7, pp. 1204–1223, 2018.
  6. S.-W. Ko, H. Chae, K. Han, S. Lee, D.-W. Seo, and K. Huang, “V2X-based vehicular positioning: Opportunities, challenges, and future directions,” IEEE Wireless Commun., vol. 28, pp. 144–151, Apr. 2021.
  7. H. Wymeersch, G. Seco-Granados, G. Destino, D. Dardari, and F. Tufvesson, “5G mmWave positioning for vehicular networks,” IEEE Wireless Commun., vol. 24, pp. 80–86, Dec. 2017.
  8. D. Jin, F. Yin, C. Fritsche, F. Gustafsson, and A. M. Zoubir, “Bayesian cooperative localization using received signal strength with unknown path loss exponent: Message passing approaches,” IEEE Trans. Signal Process., vol. 68, pp. 1120–1135, Jan. 2020.
  9. H. Kim, S. H. Lee, and S. Kim, “Cooperative localization with constraint satisfaction problem in 5G vehicular networks,” IEEE Trans. Intell. Transp. Syst., vol. 23, pp. 3180–3189, Apr. 2022.
  10. S. S. Kia, S. Rounds, and S. Martinez, “Cooperative localization for mobile agents: A recursive decentralized algorithm based on kalman-filter decoupling,” IEEE Control Syst. Mag., vol. 36, no. 2, pp. 86–101, 2016.
  11. J. Eom, H. Kim, S. H. Lee, and S. Kim, “DNN-assisted cooperative localization in vehicular networks,” Energies, vol. 12, pp. 7052–7058, Jul. 2019.
  12. G. Revach, N. Shlezinger, X. Ni, A. L. Escoriza, R. J. G. van Sloun, and Y. C. Eldar, “KalmanNet: Neural network aided Kalman filtering for partially known dynamics,” IEEE Trans. Signal Process., vol. 70, pp. 1532–1547, Mar. 2022.
  13. C.-H. Lin, Y.-H. Fang, H.-Y. Chang, Y.-C. Lin, W.-H. Chung, S.-C. Lin, and T.-S. Lee, “GCN-CNVPS: Novel method for cooperative neighboring vehicle positioning system based on graph convolution network,” IEEE Access, vol. 9, pp. 153429–153441, 2021.
  14. W. Yan, D. Jin, Z. Lin, and F. Yin, “Graph neural network for large-scale network localization,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 5250–5254, Jun. 2021.
  15. B. Toghi, M. Saifuddin, H. N. Mahjoub, M. O. Mughal, Y. P. Fallah, J. Rao, and S. Das, “Multiple access in cellular V2X: Performance analysis in highly congested vehicular networks,” in 2018 IEEE Vehicular Networking Conference (VNC), pp. 1–8, 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com