Tidal heating as a discriminator for horizons in equatorial eccentric extreme mass ratio inspirals (2404.04013v3)
Abstract: Tidal heating in a binary black hole system is driven by the absorption of energy and angular momentum by the black hole's horizon. Previous works have shown that this phenomenon becomes particularly significant during the late stages of an extreme mass ratio inspiral (EMRI) into a rapidly spinning massive black hole, a key focus for future low-frequency gravitational-wave observations by (for instance) the LISA mission. Past analyses have largely focused on quasi-circular inspiral geometry, with some of the most detailed studies looking at equatorial cases. Though useful for illustrating the physical principles, this limit is not very realistic astrophysically, since the population of EMRI events is expected to arise from compact objects scattered onto relativistic orbits in galactic centers through many-body events. In this work, we extend those results by studying the importance of tidal heating in equatorial EMRIs with generic eccentricities. Our results suggest that accurate modeling of tidal heating is crucial to prevent significant dephasing and systematic errors in EMRI parameter estimation. We examine a phenomenological model for EMRIs around exotic compact objects by parameterizing deviations from the black hole picture in terms of the fraction of radiation absorbed compared to the BH case. Based on a mismatch calculation we find that reflectivities as small as $|\mathcal{R}|2 \sim \mathcal{O}(10{-5})$ are distinguishable from the BH case, irrespective of the value of the eccentricity. We stress, however, that this finding should be corroborated by future parameter estimation studies.
- V. Cardoso and P. Pani, Testing the nature of dark compact objects: a status report, Living Rev. Rel. 22, 4 (2019), arXiv:1904.05363 [gr-qc] .
- N. Oshita, Q. Wang, and N. Afshordi, On Reflectivity of Quantum Black Hole Horizons, JCAP 04, 016, arXiv:1905.00464 [hep-th] .
- R. Brito, V. Cardoso, and P. Pani, Superradiance, Lect. Notes Phys. 906, pp.1 (2015), arXiv:1501.06570 [gr-qc] .
- J. B. Hartle, Tidal Friction in Slowly Rotating Black Holes, Phys. Rev. D8, 1010 (1973).
- I. Vega, E. Poisson, and R. Massey, Intrinsic and extrinsic geometries of a tidally deformed black hole, Classical and Quantum Gravity 28, 175006 (2011), arXiv:1106.0510 [gr-qc] .
- S. O’Sullivan and S. A. Hughes, Strong-field tidal distortions of rotating black holes: Formalism and results for circular, equatorial orbits, Phys. Rev. D90, 124039 (2014), [Erratum: Phys. Rev.D91,no.10,109901(2015)], arXiv:1407.6983 [gr-qc] .
- S. W. Hawking and J. B. Hartle, Energy and angular momentum flow into a black hole, Communications in Mathematical Physics 27, 283 (1972).
- S. A. Hughes, Evolution of circular, nonequatorial orbits of kerr black holes due to gravitational-wave emission. ii. inspiral trajectories and gravitational waveforms, Phys. Rev. D 64, 064004 (2001a).
- M. Colpi et al., LISA Definition Study Report, (2024), arXiv:2402.07571 [astro-ph.CO] .
- S. A. Hughes, Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational wave emission. II. Inspiral trajectories and gravitational wave forms, Phys. Rev. D64, 064004 (2001b), [Erratum: Phys. Rev.D88,no.10,109902(2013)], arXiv:gr-qc/0104041 [gr-qc] .
- S. Bernuzzi, A. Nagar, and A. Zenginoglu, Horizon-absorption effects in coalescing black-hole binaries: An effective-one-body study of the non-spinning case, Phys. Rev. D86, 104038 (2012), arXiv:1207.0769 [gr-qc] .
- S. Datta and S. Bose, Probing the nature of central objects in extreme-mass-ratio inspirals with gravitational waves, Phys. Rev. D 99, 084001 (2019), arXiv:1902.01723 [gr-qc] .
- N. Afshordi et al. (LISA Consortium Waveform Working Group), Waveform Modelling for the Laser Interferometer Space Antenna, (2023), arXiv:2311.01300 [gr-qc] .
- S. Datta, Tidal heating of Quantum Black Holes and their imprints on gravitational waves, Phys. Rev. D 102, 064040 (2020), arXiv:2002.04480 [gr-qc] .
- Y. Sherf, Tidal-heating and viscous dissipation correspondence in black holes and viscous compact objects, Phys. Rev. D 103, 104003 (2021), arXiv:2104.03766 [gr-qc] .
- S. Isoyama and H. Nakano, Post-Newtonian templates for binary black-hole inspirals: the effect of the horizon fluxes and the secular change in the black-hole masses and spins, Class. Quant. Grav. 35, 024001 (2018), arXiv:1705.03869 [gr-qc] .
- S. Datta, K. S. Phukon, and S. Bose, Recognizing black holes in gravitational-wave observations: Challenges in telling apart impostors in mass-gap binaries, Phys. Rev. D 104, 084006 (2021), arXiv:2004.05974 [gr-qc] .
- N. Sago and T. Tanaka, Oscillations in the extreme mass-ratio inspiral gravitational wave phase correction as a probe of a reflective boundary of the central black hole, Phys. Rev. D 104, 064009 (2021), arXiv:2106.07123 [gr-qc] .
- E. Maggio, M. van de Meent, and P. Pani, Extreme mass-ratio inspirals around a spinning horizonless compact object, Phys. Rev. D 104, 104026 (2021), arXiv:2106.07195 [gr-qc] .
- R. P. Kerr, Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics, Phys. Rev. Lett. 11, 237 (1963).
- E. Maggio, P. Pani, and V. Ferrari, Exotic Compact Objects and How to Quench their Ergoregion Instability, Phys. Rev. D96, 104047 (2017), arXiv:1703.03696 [gr-qc] .
- J. Abedi, H. Dykaar, and N. Afshordi, Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons, Phys. Rev. D96, 082004 (2017), arXiv:1612.00266 [gr-qc] .
- Q. Wang and N. Afshordi, Black hole echology: The observer’s manual, Phys. Rev. D97, 124044 (2018), arXiv:1803.02845 [gr-qc] .
- R. H. Boyer and R. W. Lindquist, Maximal Analytic Extension of the Kerr Metric, Journal of Mathematical Physics 8, 265 (1967).
- W. Schmidt, Celestial mechanics in Kerr spacetime, Classical and Quantum Gravity 19, 2743 (2002), arXiv:gr-qc/0202090 [gr-qc] .
- R. Fujita and W. Hikida, Analytical solutions of bound timelike geodesic orbits in Kerr spacetime, Class. Quant. Grav. 26, 135002 (2009), arXiv:0906.1420 [gr-qc] .
- M. van de Meent, Analytic solutions for parallel transport along generic bound geodesics in Kerr spacetime, Classical and Quantum Gravity 37, 145007 (2020), arXiv:1906.05090 [gr-qc] .
- S. A. Hughes, Parameterizing black hole orbits for adiabatic inspiral, arXiv e-prints , arXiv:2401.09577 (2024), arXiv:2401.09577 [gr-qc] .
- S. A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J. 185, 635 (1973).
- E. Newman and R. Penrose, An Approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3, 566 (1962).
- L. C. Stein and N. Warburton, Location of the last stable orbit in Kerr spacetime, Phys. Rev. D 101, 064007 (2020), arXiv:1912.07609 [gr-qc] .
- L. Lindblom, B. J. Owen, and D. A. Brown, Model Waveform Accuracy Standards for Gravitational Wave Data Analysis, Phys. Rev. D78, 124020 (2008), arXiv:0809.3844 [gr-qc] .
- T. Robson, N. J. Cornish, and C. Liug, The construction and use of LISA sensitivity curves, Class. Quant. Grav. 36, 105011 (2019), arXiv:1803.01944 [astro-ph.HE] .
- E. Barausse et al., Prospects for Fundamental Physics with LISA, Gen. Rel. Grav. 52, 81 (2020), arXiv:2001.09793 [gr-qc] .
- K. G. Arun et al. (LISA), New horizons for fundamental physics with LISA, Living Rev. Rel. 25, 4 (2022), arXiv:2205.01597 [gr-qc] .
- E. E. Flanagan and S. A. Hughes, Measuring gravitational waves from binary black hole coalescences: 2. The Waves’ information and its extraction, with and without templates, Phys. Rev. D57, 4566 (1998), arXiv:gr-qc/9710129 [gr-qc] .
- S. Datta, Horizon fluxes of binary black holes in eccentric orbits, (2023), arXiv:2305.03771 [gr-qc] .
- L. Barack, Gravitational self force in extreme mass-ratio inspirals, Class. Quant. Grav. 26, 213001 (2009), arXiv:0908.1664 [gr-qc] .
- S. Datta and K. S. Phukon, Imprint of black hole area quantization and Hawking radiation on inspiraling binary, Phys. Rev. D 104, 124062 (2021), arXiv:2105.11140 [gr-qc] .
- K. Chakravarti, R. Ghosh, and S. Sarkar, Signature of nonuniform area quantization on gravitational waves, Phys. Rev. D 104, 084049 (2021), arXiv:2108.02444 [gr-qc] .
- S. Chakraborty, S. Datta, and S. Sau, Tidal heating of black holes and exotic compact objects on the brane, Phys. Rev. D 104, 104001 (2021), arXiv:2103.12430 [gr-qc] .
- P. Pani and A. Maselli, Love in Extrema Ratio, Int. J. Mod. Phys. D 28, 1944001 (2019), arXiv:1905.03947 [gr-qc] .
- S. Datta, Probing horizon scale quantum effects with Love, Class. Quant. Grav. 39, 225016 (2022), arXiv:2107.07258 [gr-qc] .
- G. A. Piovano, A. Maselli, and P. Pani, Constraining the tidal deformability of supermassive objects with extreme mass ratio inspirals and semianalytical frequency-domain waveforms, Phys. Rev. D 107, 024021 (2023), arXiv:2207.07452 [gr-qc] .
- J. P. Bernaldez and S. Datta, Eccentricity-tide coupling: impact on binary neutron stars and extreme mass-ratio inspirals, (2023), arXiv:2303.01398 [gr-qc] .
- T. Zi and P.-C. Li, Probing the tidal deformability of the central object with analytic kludge waveforms of an extreme-mass-ratio inspiral, Phys. Rev. D 108, 024018 (2023), arXiv:2303.16610 [gr-qc] .
- S. Nair, S. Chakraborty, and S. Sarkar, Dynamical Love numbers for area quantized black holes, Phys. Rev. D 107, 124041 (2023), arXiv:2208.06235 [gr-qc] .
- G. Raposo, P. Pani, and R. Emparan, Exotic compact objects with soft hair, Phys. Rev. D99, 104050 (2019), arXiv:1812.07615 [gr-qc] .
- C. Barceló, R. Carballo-Rubio, and S. Liberati, Generalized no-hair theorems without horizons, Class. Quant. Grav. 36, 13 (2019), arXiv:1901.06388 [gr-qc] .
- I. Bena and D. R. Mayerson, Multipole Ratios: A New Window into Black Holes, Phys. Rev. Lett. 125, 221602 (2020), arXiv:2006.10750 [hep-th] .
- I. Bena and D. R. Mayerson, Black Holes Lessons from Multipole Ratios, JHEP 03, 114, arXiv:2007.09152 [hep-th] .