Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PHISWID: Physics-Inspired Underwater Image Dataset Synthesized from RGB-D Images (2404.03998v3)

Published 5 Apr 2024 in cs.CV and eess.IV

Abstract: This paper introduces the physics-inspired synthesized underwater image dataset (PHISWID), a dataset tailored for enhancing underwater image processing through physics-inspired image synthesis. For underwater image enhancement, data-driven approaches (e.g., deep neural networks) typically demand extensive datasets, yet acquiring paired clean atmospheric images and degraded underwater images poses significant challenges. Existing datasets have limited contributions to image enhancement due to lack of physics models, publicity, and ground-truth atmospheric images. PHISWID addresses these issues by offering a set of paired atmospheric and underwater images. Specifically, underwater images are synthetically degraded by color degradation and marine snow artifacts from atmospheric RGB-D images. It is enabled based on a physics-based underwater image observation model. Our synthetic approach generates a large quantity of the pairs, enabling effective training of deep neural networks and objective image quality assessment. Through benchmark experiments with some datasets and image enhancement methods, we validate that our dataset can improve the image enhancement performance. Our dataset, which is publicly available, contributes to the development in underwater image processing.

Summary

We haven't generated a summary for this paper yet.