Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Game-theoretic Distributed Learning Approach for Heterogeneous-cost Task Allocation with Budget Constraints (2404.03974v1)

Published 5 Apr 2024 in cs.GT

Abstract: This paper investigates heterogeneous-cost task allocation with budget constraints (HCTAB), wherein heterogeneity is manifested through the varying capabilities and costs associated with different agents for task execution. Different from the centralized optimization-based method, the HCTAB problem is solved using a fully distributed framework, and a coalition formation game is introduced to provide a theoretical guarantee for this distributed framework. To solve the coalition formation game, a convergence-guaranteed log-linear learning algorithm based on heterogeneous cost is proposed. This algorithm incorporates two improvement strategies, namely, a cooperative exchange strategy and a heterogeneous-cost log-linear learning strategy. These strategies are specifically designed to be compatible with the heterogeneous cost and budget constraints characteristic of the HCTAB problem. Through ablation experiments, we demonstrate the effectiveness of these two improvements. Finally, numerical results show that the proposed algorithm outperforms existing task allocation algorithms and learning algorithms in terms of solving the HCTAB problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. B. Liao, F. Wan, Y. Hua, S. Zhu, T. Ma, and X. Qing, “Bdbm: A distributed network simplification method for solving task allocation problems,” Expert Systems with Applications, vol. 246, no. 4, p. 123170, 2024.
  2. P. Xue, L. Fei, and W. Ding, “A volunteer allocation optimization model in response to major natural disasters based on improved dempster–shafer theory,” Expert Systems with Applications, vol. 236, p. 121285, 2024.
  3. F. Yan, J. Chu, J. Hu, and X. Zhu, “Cooperative task allocation with simultaneous arrival and resource constraint for multi-uav using a genetic algorithm,” Expert Systems with Applications, vol. 245, p. 123023, 2024.
  4. I. Jang, J. Jeong, H.-S. Shin, S. Kim, A. Tsourdos, and J. Suk, “Cooperative control for a flight array of uavs and an application in radar jamming,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 8011–8018, 2017.
  5. W. Yang, L. He, X. Liu, and Y. Chen, “Onboard coordination and scheduling of multiple autonomous satellites in an uncertain environment,” Advances in Space Research, vol. 68, no. 11, pp. 4505–4524, 2021.
  6. B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multi-robot systems,” The International Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.
  7. Q. Li, M. Li, B. Q. Vo, and R. Kowalczyk, “An efficient algorithm for task allocation with the budget constraint,” Expert Systems with Applications, vol. 210, p. 118279, 2022.
  8. T. Sandholm, “Agents in electronic commerce: Component technologies for automated negotiation and coalition formation,” Autonomous Agents and Multi-Agent Systems, vol. 3, no. 1, pp. 73–96, 2000.
  9. H. Wu and H. Shang, “Potential game for dynamic task allocation in multi-agent system,” ISA transactions, vol. 102, pp. 208–220, 2020.
  10. Z. Zhou, H. Yu, C. Xu, Y. Zhang, S. Mumtaz, and J. Rodriguez, “Dependable content distribution in d2d-based cooperative vehicular networks: A big data-integrated coalition game approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 3, pp. 953–964, 2018.
  11. A. Amiri and R. Barkhi, “The bundled task assignment problem in mobile crowdsensing: A column generation-based solution approach,” Expert Systems with Applications, vol. 237, no. 1, p. 121657, 2024.
  12. S. Song, S. Ma, X. Zhu, Y. Li, F. Yang, and L. Zhai, “Joint bandwidth allocation and task offloading in multi-access edge computing,” Expert Systems with Applications, vol. 217, no. 1, p. 119563, 2023.
  13. Y. Cheung, G. Meng Hong, and K. Keng Ang, “A dynamic project allocation algorithm for a distributed expert system,” Expert Systems with Applications, vol. 26, no. 2, pp. 225–232, 2004.
  14. T. Michalak, T. Rahwan, E. Elkind, M. Wooldridge, and N. R. Jennings, “A hybrid exact algorithm for complete set partitioning,” Artificial Intelligence, vol. 230, pp. 14–50, 2016.
  15. G. Attiya and Y. Hamam, “Task allocation for maximizing reliability of distributed systems: A simulated annealing approach,” Journal of Parallel and Distributed Computing, vol. 66, no. 10, pp. 1259–1266, 2006.
  16. N. Geng, Z. Chen, Q. A. Nguyen, and D. Gong, “Particle swarm optimization algorithm for the optimization of rescue task allocation with uncertain time constraints,” Complex & Intelligent Systems, vol. 7, no. 2, pp. 873–890, 2021.
  17. J. Zhou, X. Zhao, X. Zhang, D. Zhao, and H. Li, “Task allocation for multi-agent systems based on distributed many-objective evolutionary algorithm and greedy algorithm,” IEEE Access, vol. 8, pp. 19306–19318, 2020.
  18. J. C. Amorim, V. Alves, and E. P. de Freitas, “Assessing a swarm-gap based solution for the task allocation problem in dynamic scenarios,” Expert Systems with Applications, vol. 152, p. 113437, 2020.
  19. F. Yan and K. Di, “Solving the multi-robot task allocation with functional tasks based on a hyper-heuristic algorithm,” Applied Soft Computing, vol. 146, p. 110628, 2023.
  20. F. Janati, F. Abdollahi, S. S. Ghidary, M. Jannatifar, J. Baltes, and S. Sadeghnejad, “Multi-robot task allocation using clustering method,” in Dollars for life (M. Ziegler, ed.), vol. 447 of Advances in Intelligent Systems and Computing, pp. 233–247, New Haven Connecticut: Yale University Press, 2022.
  21. F. Quinton, C. Grand, and C. Lesire, “Market approaches to the multi-robot task allocation problem: a survey,” Journal of Intelligent & Robotic Systems, vol. 107, no. 2, 2023.
  22. Smith, “The contract net protocol: High-level communication and control in a distributed problem solver,” IEEE Transactions on Computers, vol. C-29, no. 12, pp. 1104–1113, 1980.
  23. D.-H. Lee, S. A. Zaheer, and J.-H. Kim, “A resource-oriented, decentralized auction algorithm for multirobot task allocation,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 4, pp. 1469–1481, 2015.
  24. H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized auctions for robust task allocation,” IEEE Transactions on Robotics, vol. 25, no. 4, pp. 912–926, 2009.
  25. F. Ye, J. Chen, Q. Sun, Y. Tian, and T. Jiang, “Decentralized task allocation for heterogeneous multi-uav system with task coupling constraints,” The Journal of Supercomputing, vol. 77, no. 1, pp. 111–132, 2021.
  26. R. Massin, C. J. Le Martret, and P. Ciblat, “A coalition formation game for distributed node clustering in mobile ad hoc networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3940–3952, 2017.
  27. N. Xing, Q. Zong, L. Dou, B. Tian, and Q. Wang, “A game theoretic approach for mobility prediction clustering in unmanned aerial vehicle networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 10, pp. 9963–9973, 2019.
  28. M. W. Baidas and A. B. MacKenzie, “Altruistic coalition formation in cooperative wireless networks,” IEEE Transactions on Communications, vol. 61, no. 11, pp. 4678–4689, 2013.
  29. J. Chen, Q. Wu, Y. Xu, N. Qi, X. Guan, Y. Zhang, and Z. Xue, “Joint task assignment and spectrum allocation in heterogeneous uav communication networks: A coalition formation game-theoretic approach,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 440–452, 2021.
  30. Q. Li, M. Li, B. Quoc Vo, and R. Kowalczyk, “An anytime algorithm for large-scale heterogeneous task allocation,” in 2020 25th International Conference on Engineering of Complex Computer Systems (A. W.-C. Liew, ed.), (Los Alamitos, CA), pp. 206–215, IEEE Computer Society, Conference Publishing Services, 2020.
  31. R. J. Aumann and B. Peleg, “Von neumann-morgenstern solutions to cooperative games without side payments,” Bulletin of the American Mathematical Society, vol. 66, no. 3, pp. 173–179, 1960.
  32. David H. Wolpert and Kagan Tumer, “An introduction to collective intelligence,” 1999.
  33. L. Ruan, G. Li, W. Dai, S. Tian, G. Fan, J. Wang, and X. Dai, “Cooperative relative localization for uav swarm in gnss-denied environment: A coalition formation game approach,” IEEE Internet of Things Journal, vol. 9, no. 13, pp. 11560–11577, 2022.
  34. T. H. Ho, C. F. Camerer, and J.-K. Chong, “Self-tuning experience weighted attraction learning in games,” Journal of Economic Theory, vol. 133, no. 1, pp. 177–198, 2007.
  35. Y. Yazıcıoğlu, R. Bhat, and D. Aksaray, “Distributed planning for serving cooperative tasks with time windows: A game theoretic approach,” Journal of Intelligent & Robotic Systems, vol. 103, no. 2, p. 2302, 2021.
  36. H. P. Young, Strategic Learning and its Limits. Oxford University Press, 2004.
  37. J. R. Marden and J. S. Shamma, “Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation,” Games and Economic Behavior, vol. 75, no. 2, pp. 788–808, 2012.
  38. Z. Zheng, J. Guo, and E. Gill, “Onboard mission allocation for multi-satellite system in limited communication environment,” Aerospace Science and Technology, vol. 79, no. 1, pp. 174–186, 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com