2000 character limit reached
Recovery of differential operators from a noisy Fourier transform (2404.03917v1)
Published 5 Apr 2024 in math.NA and cs.NA
Abstract: The paper concerns problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of generalized Laplace operators from a noisy Fourier transform in the $L_2$-metric.
- S. M. Nikol’skii, “On the question of estimates for approximation by quadrature formulae”, Uspekhi Mat. Nauk 5:2(36) (1950), 165–177. (Russian)
- C. A. Micchelli and T. J. Rivlin, “A survey of optimal recovery”, Optimal estimation in approximation theory, Proc. Internat. Sympos. (Freudenstadt 1976), Plenum, New York 1977, pp. 1–54.
- A. A. Melkman and C. A. Micchelli, “Optimal estimation of linear operators in Hilbert spaces from inaccurate data” SIAM J. Numer. Anal., 16 (1979), 87–105.
- V. V. Arestov, “Optimal recovery of operators and related problems”, Proc. All-Union School in Function Theory (Dushanbe, August 1986), Trudy Mat. Inst. Steklov., vol. 189, Nauka, Moscow 1989, pp. 3–20; English transl., Proc. Steklov Inst. Math. 189:4 (1990), 1–20.
- G. G. Magaril-Il’yaev and K. Yu. Osipenko, “Optimal recovery of functionals based on inaccurate data”, Mat. Zametki 50:6 (1991), 85–93; English transl., Math. Notes 50:6 (1991), 1274–1279.
- G. G. Magaril-Il’yaev and K. Yu. Osipenko, “Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error”, Mat. Sb. 193:3 (2002), 79–100; English transl., Sb. Math. 193:3 (2002), 387–407.
- G. G. Magaril-Il’yaev and K. Yu. Osipenko, “Optimal recovery of functions and their derivatives from inaccurate information about a spectrum and inequalities for derivatives”, Funktsional. Anal. l Prilozhen. 37:3 (2003), 51–64; English transl., Funct. Anal. Appl. 37:3 (2003), 203–214.
- K. Yu. Osipenko, “The Hardy–Littlewood–Pólya inequality for analytic functions from Hardy–Sobolev spaces”, Mat. Sb. 197:3 (2006), 15–34; English transl., Sb. Math. 197:3 (2006), 315–334.
- K. Yu. Osipenko, “Optimal recovery of linear operators in non-Euclidean metrics”, Mat. Sb. 205:10 (2014), 77–106; English transl., Sb. Math. 205:10 (2014), 1442–1472.
- K. Yu. Osipenko, “Optimal recovery of operators and multidimensional Carlson type inequalities”, J. Complexity 32:1 (2016), 53–73.
- V. V. Arestov, “Best uniform approximation of the differentiation operator by operators bounded in the space L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT”, Tr. Inst. Mat. Mekh. 24:4 (2018), 34–56; English transl., Proc. Steklov Inst. Math. 308:1 (2030), 9–30.
- V. V. Arestov, “Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given Fourier transform”, Mathematical Optimization Theory and Operation Research. MOTOR 2019. Lecture Notes in Comput. Sci., vol. 11548, Springer, Cham 2019, pp. 434–448.
- V. V. Arestov, “Uniform approximation of differentiation operators by bounded linear operators in the space Lrsubscript𝐿𝑟L_{r}italic_L start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT”, Anal. Math., 46:3 (2020), 425–445.
- K. Yu. Osipenko, “Optimal recovery in weighted spaces with homogeneous weights”, Mat. Sb. 213:3 (2022), 111–138; English transl., Sb. Math. 213:3 (2022), 385–411.
- G. G. Magaril-Il’yaev and K. Yu. Osipenko, “On optimal harmonic synthesis from inaccurate spectral data”, Funktsional. Anal. l Prilozhen. 44:3 (2010), 76–79; English transl., Funct. Anal. Appl. 44:3 (2010), 223–225.
- G. G. Magaril-Il’yaev and K. Yu. Osipenko, “The Hardy–Littlewood–Pólya inequality and the reconstruction of derivatives from inaccurate data”, Dokl. Ross. Akad. Nauk 438:3 (2011), 300–302; English transl., Dokl. Math. 83:3 (2011), 337–339.
- G. G. Magaril-Il’yaev and K. Yu. Osipenko, “On optimal recovery of solutions to difference equations from inaccurate data”, Probl. Mat. Anal. 69 (2013), 47–54; English transl., J. Math. Sci., New York 189:4 (2013), 596–603.
- K. Yu. Osipenko, “On the construction of families of optimal recovery methods for linear operators”, Izv. RAN. Ser. Mat. 88:1 (2024), 98–120.
- K. Yu. Osipenko, “Optimal recovery and generalized Carlson inequality for weights with symmetry properties”, J. Complexity 81 101807 (2024), pp.35.