Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Under-Canopy Navigation using Aerial Lidar Maps (2404.03911v2)

Published 5 Apr 2024 in cs.RO

Abstract: Autonomous navigation in unstructured natural environments poses a significant challenge. In goal navigation tasks without prior information, the limited look-ahead of onboard sensors utilised by robots compromises path efficiency. We propose a novel approach that leverages an above-the-canopy aerial map for improved ground robot navigation. Our system utilises aerial lidar scans to create a 3D probabilistic occupancy map, uniquely incorporating the uncertainty in the aerial vehicle's trajectory for improved accuracy. Novel path planning cost functions are introduced, combining path length with obstruction risk estimated from the probabilistic map. The D-Star Lite algorithm then calculates an optimal (minimum-cost) path to the goal. This system also allows for dynamic replanning upon encountering unforeseen obstacles on the ground. Extensive experiments and ablation studies in simulated and real forests demonstrate the effectiveness of our system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. I. D. Miller, F. Cladera, T. Smith, C. J. Taylor, and V. Kumar, “Stronger Together: Air-Ground Robotic Collaboration Using Semantics,” IEEE Robotics and Automation Letters, vol. 7, pp. 9643–9650, 2022.
  2. V. D. Sharma, M. Toubeh, L. Zhou, and P. Tokekar, “Risk-aware planning and assignment for ground vehicles using uncertain perception from aerial vehicles,” IEEE Int. Conf. on Intelligent Robots and Systems, pp. 11 763–11 769, 2020.
  3. S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 354–363, 2005.
  4. X. Cai, M. Everett, L. Sharma, P. R. Osteen, and J. P. How, “Probabilistic traversability model for risk-aware motion planning in off-road environments,” 2023 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 11 297–11 304, 2023.
  5. D. D. Fan, A. A. Agha-Mohammadi, and E. A. Theodorou, “Learning risk-aware costmaps for traversability in challenging environments,” IEEE Robotics and Automation Letters, vol. 7, pp. 279–286, 1 2022.
  6. D. M. Bradley, J. K. Chang, D. Silver, M. Powers, H. Herman, P. Rander, and A. Stentz, “Scene understanding for a high-mobility walking robot,” 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1144–1151, 2015.
  7. N. Vandapel, R. R. Donamukkala, and M. Hebert, “Unmanned ground vehicle navigation using aerial ladar data,” The Int. Journal of Robotics Research, vol. 25, no. 1, pp. 31–51, 2006.
  8. D. Silver, B. Sofman, N. Vandapel, J. A. Bagnell, and A. Stentz, “Experimental analysis of overhead data processing to support long range navigation,” IEEE Int. Conf. on Intelligent Robots and Systems, pp. 2443–2450, 2006.
  9. M. Eder, R. Prinz, F. Schöggl, and G. Steinbauer-Wagner, “Traversability analysis for off-road environments using locomotion experiments and earth observation data,” Robotics and Autonomous Systems, vol. 168, p. 104494, 2023.
  10. B. Sofman, E. Lin, J. A. Bagnell, J. Cole, N. Vandapel, and A. Stentz, “Improving robot navigation through self-supervised online learning,” Journal of Field Robotics, vol. 23, no. 11-12, pp. 1059–1075, 2006.
  11. A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: An efficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots, vol. 34, pp. 189–206, 2013.
  12. A.-A. Agha-Mohammadi, E. Heiden, K. Hausman, and G. Sukhatme, “Confidence-rich grid mapping,” The Int. Journal of Robotics Research, vol. 38, no. 12-13, pp. 1352–1374, 2019.
  13. C. O’Meadhra, W. Tabib, and N. Michael, “Variable resolution occupancy mapping using gaussian mixture models,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2015–2022, 2019.
  14. J. Wang and B. Englot, “Fast, accurate gaussian process occupancy maps via test-data octrees and nested bayesian fusion,” 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1003–1010, 2016.
  15. S. T. O’Callaghan, F. T. Ramos, and H. Durrant-Whyte, “Contextual occupancy maps incorporating sensor and location uncertainty,” 2010 IEEE Int. Conf. on Robotics and Automation, pp. 3478–3485, 2010.
  16. J. L. Blanco, J. A. Fernndez-Madrigal, and J. Gonzalez, “A novel measure of uncertainty for mobile robot SLAM with rao-blackwellized particle filters,” Int. Journal of Robotics Research, vol. 27, pp. 73–89, 2008.
  17. D. Joubert, W. Brink, and B. Herbst, “Pose uncertainty in occupancy grids through monte carlo integration,” Journal of Intelligent & Robotic Systems, vol. 77, pp. 5–16, 2015.
  18. P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on point clouds: Motion planning, trajectory optimization, and terrain assessment in generic nonplanar environments,” Journal of Field Robotics, vol. 34, no. 5, pp. 940–984, 2017.
  19. J. D. Hernández, E. Vidal, G. Vallicrosa, E. Galceran, and M. Carreras, “Online path planning for autonomous underwater vehicles in unknown environments,” 2015 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1152–1157, 2015.
  20. D. Meyer-Delius, M. Beinhofer, and W. Burgard, “Occupancy grid models for robot mapping in changing environments,” Proceedings of the AAAI Conf. on Artificial Intelligence, vol. 26, no. 1, pp. 2024–2030, 2012.
  21. T. Overbye and S. Saripalli, “Fast local planning and mapping in unknown off-road terrain,” 2020 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 5912–5918, 2020.
  22. J. Banfi, L. Woo, and M. Campbell, “Is it Worth to Reason about Uncertainty in Occupancy Grid Maps during Path Planning?” 2022 Int. Conf. on Robotics and Automation (ICRA), pp. 11 102–11 108, 2022.
  23. N. Hudson et al., “Heterogeneous ground and air platforms, homogeneous sensing: Team csiro data61’s approach to the darpa subterranean challenge,” Field Robotics, vol. 2, no. 1, p. 595–636, Mar. 2022.
  24. M. Ramezani, K. Khosoussi, G. Catt, P. Moghadam, J. Williams, P. Borges, F. Pauling, and N. Kottege, “Wildcat: Online Continuous-Time 3D Lidar-Inertial SLAM,” 2022.
  25. W. Zhang, J. Qi, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan, “An easy-to-use airborne LiDAR data filtering method based on cloth simulation,” Remote Sensing, vol. 8, pp. 1–22, 2016.
  26. K. Stepanas, J. Williams, E. Hernández, F. Ruetz, and T. Hines, “OHM: GPU Based Occupancy Map Generation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 078–11 085, 2022.
  27. P. Missiuro and N. Roy, “Adapting probabilistic roadmaps to handle uncertain maps,” Proceedings 2006 IEEE Int. Conf. on Robotics and Automation, 2006. ICRA 2006., pp. 1261–1267, 2006.
  28. E. Heiden, K. Hausman, G. S. Sukhatme, and A.-a. Agha-mohammadi, “Planning high-speed safe trajectories in confidence-rich maps,” 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2880–2886, 2017.
  29. M. Sánchez, J. Morales, J. L. Martínez, J. J. Fernández-Lozano, and A. García-Cerezo, “Automatically annotated dataset of a ground mobile robot in natural environments via gazebo simulations,” Sensors, vol. 22, no. 15, 2022.
  30. D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for autonomous vehicles in unknown semi-structured environments,” The Int. Journal of Robotics Research, vol. 29, no. 5, pp. 485–501, 2010.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lucas Carvalho de Lima (2 papers)
  2. Nicholas Lawrance (12 papers)
  3. Kasra Khosoussi (22 papers)
  4. Paulo Borges (10 papers)
  5. Michael Bruenig (3 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com