Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graviton mass due to dark energy as a superconducting medium: theoretical and phenomenological aspects (2404.03872v3)

Published 5 Apr 2024 in gr-qc and hep-th

Abstract: It is well known that the cosmological constant term in the Einstein field equations can be interpreted as a stress tensor for dark energy. This stress tensor is formally analogous to an elastic constitutive equation in continuum mechanics. As a result, the cosmological constant leads to a "shear modulus" and "bulk modulus" affecting all gravitational fields in the universe. The form of the constitutive equation is also analogous to the London constitutive equation for a superconductor. Treating dark energy as a type of superconducting medium for gravitational waves leads to a Yukawa-like gravitational potential and a massive graviton within standard General Relativity. We discuss a number of resulting phenomenological aspects such as a screening length scale that can also be used to describe the effects generally attributed to dark matter. In addition, we find a gravitational wave plasma frequency, index of refraction, and impedance. The expansion of the universe is interpreted as a Meissner-like effect as dark energy causes an outward "expulsion" of space-time similar to a superconductor expelling a magnetic field. The fundamental cause of these effects is interpreted as a type of spontaneous symmetry breaking of a scalar field. There is an associated chemical potential, critical temperature, and an Unruh-Hawking effect associated with the formulation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. S. M. Carroll, “The Cosmological constant,” Living Rev. Rel. 4 (2001), 1
  2. R. R. Caldwell, R. Dave and P. J. Steinhardt, “Cosmological imprint of an energy component with general equation of state,” Phys. Rev. Lett. 80 (1998), 1582-1585
  3. G. Olivares, F. Atrio-Barandela and D. Pavon, “Dynamics of Interacting Quintessence Models: Observational Constraints,” Phys. Rev. D 77 (2008), 063513
  4. M. Fierz, W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field,” Proc. Roy. Soc. Lond. A173 (1939) 211-232.
  5. H. van Dam and M. J. G. Veltman, “Massive and massless Yang-Mills and gravitational fields,” Nucl. Phys. B 22, 397 (1970); V. I. Zakharov, “Linearized gravitation theory and the graviton mass,” JETP Lett. 12, 312 (1970) [Pisma Zh. Eksp. Teor. Fiz. 12, 447 (1970)].
  6. A. I. Vainshtein, “To the problem of nonvanishing gravitation mass,” Phys. Lett. B 39, 393 (1972).
  7. D. G. Boulware and S. Deser, “Can gravitation have a finite range?,” Phys. Rev. D 6, 3368 (1972)
  8. A. H. Chamseddine and V. Mukhanov, “Higgs for Graviton: Simple and Elegant Solution,” JHEP 08 (2010), 011
  9. C. de Rham, G. Gabadadze and A. J. Tolley, “Resummation of Massive Gravity,” Phys. Rev. Lett. 106 (2011), 231101
  10. S. F. Hassan and R. A. Rosen, “Bimetric Gravity from Ghost-free Massive Gravity,” JHEP 02 (2012), 126
  11. K. Jusufi, G. Leon and A. D. Millano, “Dark Universe phenomenology from Yukawa potential?,” Phys. Dark Univ. 42 (2023), 101318
  12. E. González, K. Jusufi, G. Leon and E. N. Saridakis, “Observational constraints on Yukawa cosmology and connection with black hole shadows,” Phys. Dark Univ. 42 (2023), 101304
  13. K. Jusufi, E. González and G. Leon, “Addressing the Hubble tension in Yukawa cosmology?,” [arXiv:2402.02512 [astro-ph.CO]].
  14. T. Padmanabhan, “Atoms of Spacetime and the Nature of Gravity, ” Journal of Physics: Conference Series 701 (2016) 012018 doi:10.1088/1742-6596/701/1/012018.
  15. Musser G. “What Is Spacetime?” Nature, 557 (7704):S3-S6, (2018) doi: 10.1038/d41586-018-05095-z. PMID: 29743710.
  16. K. Jusufi and A. Sheykhi, “Apparent Dark Matter Inspired by Einstein Equation of State,” [arXiv:2402.00785 [gr-qc]].
  17. R. D’Agostino, K. Jusufi and S. Capozziello, “Testing Yukawa cosmology at the Milky Way and M31 galactic scales,” [arXiv:2404.01846 [astro-ph.CO]].
  18. S. D. Liang and T. Harko, “Superconducting dark energy,” Phys. Rev. D 91 (2015) no.8, 085042 doi:10.1103/PhysRevD.91.085042
  19. L. Tu, J. Luo, G. Gillies, “The mass of the photon,” Rep. Prog. Phys. 68 (2005) 77–130, doi:10.1088/0034-4885/68/1/R02
  20. M. Greiter, “Is electromagnetic gauge invariance spontaneously violated in superconductors?” Annals of Physics, Volume 319, Issue 1, (2005), doi.org/10.1016/j.aop.2005.03.008.
  21. K. Hinterbichler, “Theoretical Aspects of Massive Gravity,” Rev. Mod. Phys. 84, 671 (2012).
  22. F. London, H. London, “The electromagnetic equations of the supraconductor,” Proc. Roy. Soc. (London) Volume 149, Issue 866 (1935), doi.org/10.1098/rspa.1935.0048.
  23. N. Inan, J. Thompson, R. Chiao, “Interaction of gravitational waves with superconductors,” Fortsch. Phys. (2016) doi: 10.1002/prop.201600066.
  24. N. Inan, “A new approach to detecting gravitational waves via the coupling of gravity to the zero-point energy of the phonon modes of a superconductor,” IJMPD, Vol. 26, No. 12 (2017) 1743031, DOI: 10.1142/S0218271817430313.
  25. N. Inan, “Formulations of General Relativity and their Applications to Quantum Mechanical Systems (with an emphasis on gravitational waves interacting with superconductors),” PhD Dissertation, eScholarship (Open Access Publications from the University of California), ProQuest ID: Inan_ucmerced_1660D_10366, Merritt ID: ark:/13030/m5jb13w2 (2018).
  26. Beck, Jacinto de Matos, , “The Dark Energy Scale in Superconductors: Innovative Theoretical and Experimental Concepts,”, C. Beck, J.Phys.Conf.Ser. 31, 123 (2006)
  27. Jacinto de Matos, “Gravitoelectromagnetism and Dark Energy in Superconductors,”Int.J.Mod.Phys.D16:2599-2606, 2008.
  28. A. Zhuk, V. Shulga, “Effect of Medium on Fundamental Interactions in Gravity and Condensed Matter,”  Frontiers in Physics, Sec. Cosmology, doi: 10.3389/fphy.2022.875757 (2022).
  29. É. Flanagan, S. Hughes, “The basics of gravitational wave theory,” New J. Phys. 7, 204 (2005).
  30. M. Visser, “Mass for the graviton,” Gen. Rel. Grav. 30, 1717-1728, (1998).
  31. C. Will, “Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries,” Phys. Rev. D 57, 2061 (1998).
  32. W. Press, “On Gravitational Conductors, Waveguides, and Circuits,” General Relativity and Gravitation, Vol. 11, No. 2 (1978).
  33. C. J. Moore, A. Vecchio, “Ultra-low-frequency gravitational waves from cosmological and astrophysical processes,” Nat Astron 5, 1268–1274 (2021), doi.org/10.1038/s41550-021-01489-8.
  34. Agazie, et al, “The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background,” The Astrophysical Journal Letters, Volume 951, Number 1, (2023) doi 10.3847/2041-8213/acdac6.
  35. Caldwell, et al, “Detection of early-universe gravitational wave signatures and fundamental physics,” General Relativity and Gravitation (2022) 54:156, doi.org/10.1007/s10714-022-03027-x
  36. S. Barnett, “Maxwellian theory of gravitational waves and their mechanical properties,” New Journal of Physics, 16 (2014), DOI 10.1088/1367-2630/16/2/023027.
  37. N. Inan, “Formulations of General Relativity and their applications to quantum mechanical systems (with an emphasis on gravitational waves interacting with superconductors),” PhD Dissertation, eScholarship (Open Access Publications from the University of California), ProQuest ID: Inan_ucmerced_1660D_10366, Merritt ID: ark:/13030/m5jb13w2 (2018).
  38. V. Atanasov, “The geometric field (gravity) as an electro-chemical potential in a Ginzburg-Landau theory of superconductivity,” Physica B: Condensed Matter, V 517, 15, 53-58, (2017), doi.org/10.1016/j.physb.2017.05.006.
  39. K. Xenos, “An Introduction to FRW Cosmology and dark energy models,” Thesis (2020), https://arxiv.org/abs/2101.06135.
  40. S. Carroll, “Quintessence and the rest of the world,” Phys. Rev. Lett., 81:3067–3070, 1998. doi: 10.1103/PhysRevLett.81.3067.
  41. B. Ratra, P.J.E. Peebles, “Cosmological Consequences of a Rolling Homogeneous Scalar Field. Phys. Rev. D, 37:3406, 1988. doi: 10.1103, PhysRevD.37.3406.
  42. E. Bertschinger, Physics 8.962 notes, “Symmetry Transformations, the Einstein-Hilbert Action, and Gauge Invariance,” (2002).
  43. C. Prescod-Weinstein, E. Bertschinger, “An Extension of the Faddeev-Jackiw Technique to Fields in Curved Spacetimes,” arXiv:1404.0382v1 (2014).
  44. Poisson,“The Motion of Point Particles in Curved Spacetime,” Living Rev. Relativity,7, (2004), 6.
  45. M. Agop, et al, “Gravitational paramagnetism, diamagnetism and gravitational superconductivity,” Aust. J. Phys., 49, 613-22 (1996).
  46. L. Brewin, “Riemann Normal Coordinate expansions using Cadabra,” Class. Quantum. Grav. 26 175017 (2009).
  47. P. Alsing, P. Milonni, “Simplified derivation of the Hawking–Unruh temperature for an accelerated observer in vacuum,” American Journal of Physics. 72 (12): 1524–1529. arXiv:quant-ph/0401170. Bibcode:2004AmJPh..72.1524A. doi:10.1119/1.1761064. S2CID 18194078 (2004).
  48. T. Rothman, S. Boughn, “Can Gravitons be Detected,” Foundations of Physics, 36, 1801 (2006).
  49. S. Boughn, T. Rothman, “Aspects of Graviton Detection: Graviton Emission and Absorption by Atomic Hydrogen,” Class. Quant. Grav. 23, 5839-5852 (2006).
  50. L. Parker, “One-electron atom in curved space-time,” Phys. Rev. Lett. 44, 1559, (1980), doi.org/10.1103/PhysRevLett.44.1559.
  51. L. Parker, “One-electron as a probe of spacetime curvature,” Phys. Rev. D. 22 (8), 1922 (1980), doi.org/10.1103/PhysRevD.22.1922.
  52. L. Parker, L. Pimentel, “Gravitational perturbation of the hydrogen spectrum,” Phys. Rev. D 25, 3180 (1982), doi.org/10.1103/PhysRevD.25.3180.
  53. S. Minter, “On the Implications of Incompressibility of the Quantum Mechanical Wavefunction in the Presence of Tidal Gravitational Fields,” doctoral dissertation, Department of Physics, University of California, Merced (2010).
  54. R. Lano, “Gravitational Phase Transition in Neutron Stars,” arXiv:gr-qc/9611023v1 (1996).
  55. Q. Cai, G. Papini, “Applying Berry’s Phase to Problems Involving Weak Gravitational and Inertial Fields,” Class. Quan Grav. 7:269, (1990) doi:10.1088/0264-9381/7/2/021.
  56. D. Gregorash, G. Papini, “A unified theory of gravitation and electromagnetism for charged superfluids,” Physics Letters A, Volume 82, Issue 2, 67-69 (1981), doi.org/10.1016/0375-9601(81)90939-7.
  57. C. Callan Jr., S. Coleman. R. Jackiw, “A new improved energy-momentum tensor,” Annals of Physics, Volume 59, Issue 1, 42-73 (1970), doi.org/10.1016/0003-4916(70)90394-5.
  58. N. Inan, “Superconductor Meissner effects for Gravito-electromagnetic Fields in Harmonic Coordinates due to Non-relativistic Gravitational Sources,” Frontiers in Physics, Sec. Cosmology, doi: 10.3389/fphy.2022.823592 (2022).
Citations (1)

Summary

We haven't generated a summary for this paper yet.