Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bimanual Teleoperation Framework for Light Duty Underwater Vehicle-Manipulator Systems (2404.03790v1)

Published 4 Apr 2024 in cs.RO

Abstract: In an effort to lower the barrier to entry in underwater manipulation, this paper presents an open-source, user-friendly framework for bimanual teleoperation of a light-duty underwater vehicle-manipulator system (UVMS). This framework allows for the control of the vehicle along with two manipulators and their end-effectors using two low-cost haptic devices. The UVMS kinematics are derived in order to create an independent resolved motion rate controller for each manipulator, which optimally controls the joint positions to achieve a desired end-effector pose. This desired pose is computed in real-time using a teleoperation controller developed to process the dual haptic device input from the user. A physics-based simulation environment is used to implement this framework for two example tasks as well as provide data for error analysis of user commands. The first task illustrates the functionality of the framework through motion control of the vehicle and manipulators using only the haptic devices. The second task is to grasp an object using both manipulators simultaneously, demonstrating precision and coordination using the framework. The framework code is available at https://github.com/stevens-armlab/uvms_bimanual_sim.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. J. A. Trotter, C. Pattiaratchi, P. Montagna, M. Taviani, J. Falter, R. Thresher, A. Hosie, D. Haig, F. Foglini, Q. Hua et al., “First rov exploration of the perth canyon: Canyon setting, faunal observations, and anthropogenic impacts,” Frontiers in Marine Science, vol. 6, no. 173, 2019.
  2. V. H. Fernandes, A. A. Neto, and D. D. Rodrigues, “Pipeline inspection with auv,” in IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), 2015, pp. 1–5.
  3. P. Rundtop and K. Frank, “Experimental evaluation of hydroacoustic instruments for rov navigation along aquaculture net pens,” Aquacultural Engineering, vol. 74, pp. 143–156, 2016.
  4. D. Ribas, P. Ridao, L. Magí, N. Palomeras, and M. Carreras, “The girona 500, a multipurpose autonomous underwater vehicle,” in Oceans 2011 IEEE-Spain.   IEEE, 2011, pp. 1–5.
  5. D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and A. Mallios, “Girona 500 auv: From survey to intervention,” IEEE/ASME Transactions on mechatronics, vol. 17, no. 1, pp. 46–53, 2012.
  6. J. Yuh, S. Choi, C. Ikehara, G. Kim, G. McMurty, M. Ghasemi-Nejhad, N. Sarkar, and K. Sugihara, “Design of a semi-autonomous underwater vehicle for intervention missions (sauvim),” in Proceedings of 1998 international symposium on underwater technology.   IEEE, 1998, pp. 63–68.
  7. G. Marani, S. K. Choi, and J. Yuh, “Underwater autonomous manipulation for intervention missions auvs,” Ocean Engineering, vol. 36, no. 1, pp. 15–23, 2009, autonomous Underwater Vehicles.
  8. R. P. Stokey, A. Roup, C. von Alt, B. Allen, N. Forrester, T. Austin, R. Goldsborough, M. Purcell, F. Jaffre, G. Packard et al., “Development of the remus 600 autonomous underwater vehicle,” in Proceedings of OCEANS 2005 MTS/IEEE.   IEEE, 2005, pp. 1301–1304.
  9. F. Jaffre, R. Littlefield, M. Grund, and M. Purcell, “Development of a new version of the remus 6000 autonomous underwater vehicle,” in OCEANS 2019-Marseille.   IEEE, 2019, pp. 1–7.
  10. “Blue robotics, inc.” https://bluerobotics.com/, accessed: 2023-11-14.
  11. W. J. Marais, S. B. Williams, and O. Pizarro, “Anisotropic disturbance rejection for kinematically redundant systems with applications on an uvms,” in IEEE Robotics and Automation Letters, vol. 6, no. 4.   IEEE, 2021, pp. 7017–7024.
  12. ——, “Go with the flow: energy minimising periodic trajectories for uvms,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 01–07.
  13. J. McConnell, J. D. Martin, and B. Englot, “Fusing concurrent orthogonal wide-aperture sonar images for dense underwater 3d reconstruction,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 1653–1660.
  14. J. McConnell and B. Englot, “Predictive 3d sonar mapping of underwater environments via object-specific bayesian inference,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6761–6767.
  15. J. McConnell, F. Chen, and B. Englot, “Overhead image factors for underwater sonar-based slam,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4901–4908, 2022.
  16. M. Moniruzzaman, A. Rassau, D. Chai, and S. M. S. Islam, “Teleoperation methods and enhancement techniques for mobile robots: A comprehensive survey,” Robotics and Autonomous Systems, vol. 150, p. 103973, 2022.
  17. O. Khatib, X. Yeh, G. Brantner, B. Soe, B. Kim, S. Ganguly, H. Stuart, S. Wang, M. Cutkosky, A. Edsinger, P. Mullins, M. Barham, C. R. Voolstra, K. N. Salama, M. L’Hour, and V. Creuze, “Ocean one: A robotic avatar for oceanic discovery,” IEEE Robotics Automation Magazine, vol. 23, no. 4, pp. 20–29, 2016.
  18. M. V. Jakuba, C. R. German, A. D. Bowen, L. L. Whitcomb, K. Hand, A. Branch, S. Chien, and C. McFarland, “Teleoperation and robotics under ice: Implications for planetary exploration,” in 2018 IEEE Aerospace Conference.   IEEE, 2018, pp. 1–14.
  19. J. E. Manley, S. Halpin, N. Radford, and M. Ondler, “Aquanaut: A new tool for subsea inspection and intervention,” in OCEANS 2018 MTS/IEEE Charleston, 2018, pp. 1–4.
  20. K. P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, and G. A. Demetriou, “Control architectures for autonomous underwater vehicles,” IEEE Control Systems Magazine, vol. 17, no. 6, pp. 48–64, 1997.
  21. C. Sayers, D. R. Yoerger, R. P. Paul, and J. Lisiewicz, “A manipulator work package for teleoperation from unmanned untethered vehicles-current feasibility and future applications,” in International Advanced Robotics Program Workshop on Subsea Robotics.   Citeseer, 1996.
  22. C. P. Sayers and R. P. Paul, “An operator interface for teleprogramming employing synthetic fixtures,” Presence: Teleoperators & Virtual Environments, vol. 3, no. 4, pp. 309–320, 1994.
  23. N. Shirakura, T. Kiyokawa, H. Kumamoto, J. Takamatsu, and T. Ogasawara, “Collection of marine debris by jointly using uav-uuv with gui for simple operation,” IEEE Access, vol. 9, pp. 67 432–67 443, 2021.
  24. J. Burgner, D. C. Rucker, H. B. Gilbert, P. J. Swaney, P. T. Russell, K. D. Weaver, and R. J. Webster, “A telerobotic system for transnasal surgery,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 996–1006, 2014.
  25. “3d systems, inc.” https://3dsystems.com/, accessed: 2023-11-21.
  26. C. Basdogan, S. De, J. Kim, M. Muniyandi, H. Kim, and M. Srinivasan, “Haptics in minimally invasive surgical simulation and training,” IEEE Computer Graphics and Applications, vol. 24, no. 2, pp. 56–64, 2004.
  27. N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.
  28. M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschenbach, “UUV simulator: A gazebo-based package for underwater intervention and multi-robot simulation,” in OCEANS 2016 MTS/IEEE Monterey.   IEEE, sep 2016. [Online]. Available: https://doi.org/10.1109%2Foceans.2016.7761080
  29. Y.-H. Su, A. Munawar, A. Deguet, A. Lewis, K. Lindgren, Y. Li, R. H. Taylor, G. S. Fischer, B. Hannaford, and P. Kazanzides, “Collaborative robotics toolkit (crtk): Open software framework for surgical robotics research,” in 2020 Fourth IEEE International Conference on Robotic Computing (IRC), 2020, pp. 48–55.
  30. “Haptic bimanual teleoperation simulation,” https://github.com/stevens-armlab/uvms_bimanual_sim, accessed: 2024-01-18.
  31. D. E. Whitney, “Resolved motion rate control of manipulators and human prostheses,” IEEE Transactions on man-machine systems, vol. 10, no. 2, pp. 47–53, 1969.
  32. G. Marani, J. Kim, J. Yuh, and W. K. Chung, “A real-time approach for singularity avoidance in resolved motion rate control of robotic manipulators,” in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 2.   IEEE, 2002, pp. 1973–1978.
  33. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,” in Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan, May 2009.
  34. “Rviz,” https://wiki.ros.org/rviz, accessed: 2024-01-22.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com