Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A High-Fidelity Simulation Framework for Grasping Stability Analysis in Human Casualty Manipulation (2404.03741v2)

Published 4 Apr 2024 in cs.RO

Abstract: Recently, there has been a growing interest in rescue robots due to their vital role in addressing emergency scenarios and providing crucial support in challenging or hazardous situations where human intervention is difficult. However, very few of these robots are capable of actively engaging with humans and undertaking physical manipulation tasks. This limitation is largely attributed to the absence of tools that can realistically simulate physical interactions, especially the contact mechanisms between a robotic gripper and a human body. In this letter, we aim to address key limitations in current developments towards robotic casualty manipulation. Firstly, we present an integrative simulation framework for casualty manipulation. We adapt a finite element method (FEM) tool into the grasping and manipulation scenario, and the developed framework can provide accurate biomechanical reactions resulting from manipulation. Secondly, we conduct a detailed assessment of grasping stability during casualty grasping and manipulation simulations. To validate the necessity and superior performance of the proposed high-fidelity simulation framework, we conducted a qualitative and quantitative comparison of grasping stability analyses between the proposed framework and the state-of-the-art multi-body physics simulations. Through these efforts, we have taken the first step towards a feasible solution for robotic casualty manipulation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. S. Bhatia, H. S. Dhillon, and N. Kumar, “Alive human body detection system using an autonomous mobile rescue robot,” in 2011 Annual IEEE India Conference, 2011, pp. 1–5.
  2. F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement learning robot for search and rescue applications: Exploration in unknown cluttered environments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 610–617, 2019.
  3. E. Lygouras, N. Santavas, A. Taitzoglou, K. Tarchanidis, A. Mitropoulos, and A. Gasteratos, “Unsupervised human detection with an embedded vision system on a fully autonomous uav for search and rescue operations,” Sensors, vol. 19, no. 16, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/16/3542
  4. G. A. Cardona and J. M. Calderon, “Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations,” Applied Sciences, vol. 9, no. 8, 2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/8/1702
  5. W. Deng, K. Huang, X. Chen, Z. Zhou, C. Shi, R. Guo, and H. Zhang, “Semantic rgb-d slam for rescue robot navigation,” IEEE Access, vol. 8, pp. 221 320–221 329, 2020.
  6. J. P. Queralta, J. Taipalmaa, B. Can Pullinen, V. K. Sarker, T. Nguyen Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund, “Collaborative multi-robot search and rescue: Planning, coordination, perception, and active vision,” IEEE Access, vol. 8, pp. 191 617–191 643, 2020.
  7. C. Cruz, G. Sánchez, A. Barrientos, and J. Cerro, “Autonomous thermal vision robotic system for victims recognition in search and rescue missions,” Sensors, vol. 21, p. 7346, 11 2021.
  8. “Valkyrie: A patient recovery robot,” https://www.sbir.gov/sbirsearch/detail/203536, accessed: 2023-02-06.
  9. “A robotic system for wounded patient extraction and evacuation from hostile environments,” accessed: 2023-02-06.
  10. “Bear,” https://robotsguide.com/robots/bear, accessed: 2024-02-23.
  11. Z. Sun, H. Yang, Y. Ma, X. Wang, Y. Mo, H. Li, and Z. Jiang, “Bit-dmr: A humanoid dual-arm mobile robot for complex rescue operations,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 802–809, 2022.
  12. M. Yim, T. Cragg, and S.-K. Hayat, “Towards small robot aided victim manipulation,” in 2009 IEEE International Workshop on Safety, Security and Rescue Robotics (SSRR 2009), 2009, pp. 1–6.
  13. E. Peiros, Z.-Y. Chiu, Y. Zhi, N. Shinde, and M. C. Yip, “Finding biomechanically safe trajectories for robot manipulation of the human body in a search and rescue scenario,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023, pp. 167–173.
  14. A. Idkaidek and J. Iwona, “Towarad high-speed 3d nonlinear soft tissue deformation simulations using abaqus software,” in Journal of Robotic Surgery, vol. 9, 2015, pp. 299–310.
  15. M. Palmeri, A. Sharma, R. Bouchard, R. Nightingale, and K. Nightingale, “A finite-element method model of soft tissue response to impulsive acoustic radiation force,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 10, pp. 1699–1712, 2005.
  16. U. Meier, O. Lopez, C. Monserrat, M.-C. Juan, and M. Alcañiz Raya, “Real-time deformable models for surgery simulation: A survey,” Computer methods and programs in biomedicine, vol. 77, pp. 183–97, 04 2005.
  17. J. Zhang, Y. Zhong, and C. Gu, “Deformable models for surgical simulation: A survey,” IEEE Reviews in Biomedical Engineering, vol. 11, pp. 143–164, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:50785173
  18. Z. Lazher, J. A. Corrales Ramon, L. Sabourin, B. C. BOUZGARROU, and Y. Mezouar, “Grasp planning pipeline for robust manipulation of 3d deformable objects with industrial robotic hand + arm systems,” Applied Sciences, vol. 10, p. 8736, 12 2020.
  19. J. Zhou, S. Chen, and Z. Wang, “A soft-robotic gripper with enhanced object adaptation and grasping reliability,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2287–2293, 2017.
  20. L. He, Q. Lu, S.-A. Abad, N. Rojas, and T. Nanayakkara, “Soft fingertips with tactile sensing and active deformation for robust grasping of delicate objects,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2714–2721, 2020.
  21. Q. Jiang and F. Xu, “Design and motion analysis of adjustable pneumatic soft manipulator for grasping objects,” IEEE Access, vol. 8, pp. 191 920–191 929, 2020.
  22. K. Butz, C. Spurlock, R. Roy, C. Bell, P. Barrett, A. Ward, X. Xiao, A. Shirley, C. Welch, and K. Lister, “Development of the caveman human body model: Validation of lower extremity sub-injurious response to vertical accelerative loading,” Stapp car crash journal, vol. 61, pp. 175–209, 11 2017.
  23. “Body tissues — seer training.” [Online]. Available: https://training.seer.cancer.gov/anatomy/cells_tissues_membranes/tissues/
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com