Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DiffDet4SAR: Diffusion-based Aircraft Target Detection Network for SAR Images (2404.03595v2)

Published 4 Apr 2024 in eess.IV and eess.SP

Abstract: Aircraft target detection in SAR images is a challenging task due to the discrete scattering points and severe background clutter interference. Currently, methods with convolution-based or transformer-based paradigms cannot adequately address these issues. In this letter, we explore diffusion models for SAR image aircraft target detection for the first time and propose a novel \underline{Diff}usion-based aircraft target \underline{Det}ection network \underline{for} \underline{SAR} images (DiffDet4SAR). Specifically, the proposed DiffDet4SAR yields two main advantages for SAR aircraft target detection: 1) DiffDet4SAR maps the SAR aircraft target detection task to a denoising diffusion process of bounding boxes without heuristic anchor size selection, effectively enabling large variations in aircraft sizes to be accommodated; and 2) the dedicatedly designed Scattering Feature Enhancement (SFE) module further reduces the clutter intensity and enhances the target saliency during inference. Extensive experimental results on the SAR-AIRcraft-1.0 dataset show that the proposed DiffDet4SAR achieves 88.4\% mAP$_{50}$, outperforming the state-of-the-art methods by 6\%. Code is availabel at \href{https://github.com/JoyeZLearning/DiffDet4SAR}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. Y. Gong, Z. Zhang, J. Wen, G. Lan, and S. Xiao, “Small ship detection of SAR images based on optimized feature pyramid and sample augmentation,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023.
  2. H. Chang, X. Fu, J. Dong, J. Liu, and Z. Zhou, “MLSDNet: Multi-class Lightweight SAR Detection Network Based on Adaptive scale distribution attention,” IEEE Geoscience and Remote Sensing Letters, 2023.
  3. R. Niu, X. Zhi, S. Jiang, J. Gong, W. Zhang, and L. Yu, “Aircraft target detection in low signal-to-noise ratio visible remote sensing images,” Remote Sensing, vol. 15, no. 8, p. 1971, 2023.
  4. S. Shen, Z. Zhu, L. Fan, H. Zhang, and X. Wu, “DiffCLIP: Leveraging Stable Diffusion for Language Grounded 3D Classification,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3596–3605, 2024.
  5. B. Kolbeinsson and K. Mikolajczyk, “Multi-class segmentation from aerial views using recursive noise diffusion,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 8439–8449, 2024.
  6. S. Chen, P. Sun, Y. Song, and P. Luo, “DiffusionDet: Diffusion model for Object Detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19830–19843, 2023.
  7. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in International Conference on Machine Learning, pp. 2256–2265, PMLR, 2015.
  8. Z. Su, W. Liu, Z. Yu, D. Hu, Q. Liao, Q. Tian, M. Pietikäinen, and L. Liu, “Pixel difference networks for efficient edge detection,” in Proceedings of the IEEE/CVF international conference on computer vision, pp. 5117–5127, 2021.
  9. W. Zhirui, K. Yuzhuo, Z. Xuan, W. Yuelei, Z. Ting, and S. Xian, “SAR-AIRcraft-1.0: High-resolution SAR aircraft detection and recognition dataset,” Journal of Radars, vol. 12, no. 4, pp. 906–922, 2023.
  10. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 39, no. 06, pp. 1137–1149, 2017.
  11. Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into high quality object detection,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6154–6162, 2018.
  12. Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “Reppoints: Point set representation for object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9657–9666, 2019.
  13. K. Fu, J. Fu, Z. Wang, and X. Sun, “Scattering-keypoint-guided network for oriented ship detection in high-resolution and large-scale SAR images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 11162–11178, 2021.
Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com