Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Setpoint control of bilinear systems from noisy data (2404.03594v1)

Published 4 Apr 2024 in eess.SY, cs.SY, math.DS, and math.OC

Abstract: We consider the problem of designing a controller for an unknown bilinear system using only noisy input-states data points generated by it. The controller should achieve regulation to a given state setpoint and provide a guaranteed basin of attraction. Determining the equilibrium input to achieve that setpoint is not trivial in a data-based setting and we propose the design of a controller in two scenarios. The design takes the form of linear matrix inequalities and is validated numerically for a Cuk converter.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Stabilization of bilinear systems via linear state-feedback control. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(1):76–80, 2009.
  2. Combining prior knowledge and data for robust controller design. IEEE Trans. Autom. Contr., 2022.
  3. Data-based stabilization of unknown bilinear systems with guaranteed basin of attraction. Sys. & Contr. Lett., 145:104788, 2020.
  4. Data-driven control via Petersen’s lemma. Automatica, 145:110537, 2022.
  5. G. Bitsoris and N. Athanasopoulos. Constrained stabilization of bilinear discrete-time systems using polyhedral Lyapunov functions. IFAC Proc. Vol., 41(2):2502 – 2507, 2008. 17th IFAC World Congress.
  6. Linear matrix inequalities in system and control theory. SIAM, 1994.
  7. H. Chen and J. Maciejowski. Subspace identification of deterministic bilinear systems. In Proc. Amer. Control Conf., pages 1797–1801, 2000.
  8. Data-enabled predictive control: In the shallows of the DeePC. In Proc. Eur. Contr. Conf., 2019.
  9. C. De Persis and P. Tesi. Formulas for data-driven control: Stabilization, optimality, and robustness. IEEE Trans. Autom. Contr., 65(3):909–924, 2019.
  10. Subspace identification of bilinear systems subject to white inputs. IEEE Trans. Autom. Control, 44(6):1157–1165, 1999.
  11. Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press, 2012.
  12. D. Goswami and D. A. Paley. Bilinearization, reachability, and optimal control of control-affine nonlinear systems: A Koopman spectral approach. IEEE Trans. Autom. Contr., 67(6):2715–2728, 2022.
  13. Topics in matrix analysis. Cambridge university press, 1994.
  14. A framework for fitting quadratic-bilinear systems with applications to models of electrical circuits. IFAC-PapersOnLine, 55(20):7–12, 2022.
  15. M.V. Khlebnikov. Quadratic stabilization of discrete-time bilinear systems. Autom. Remote Control, 79(7):1222–1239, 2018.
  16. B. Kramer. Stability domains for quadratic-bilinear reduced-order models. SIAM Journal on Applied Dynamical Systems, 20(2):981–996, 2021.
  17. J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proc. IEEE Int. Symp. Comp. Aid. Contr. Sys. Des., 2004.
  18. Data-driven design of safe control for polynomial systems. Eur. J. Contr., 75:100914, 2024.
  19. I. Markovsky. Data-driven simulation of generalized bilinear systems via linear time-invariant embedding. IEEE Trans. Autom. Contr., 68(2):1101–1106, 2022.
  20. M. Milanese and C. Novara. Set membership identification of nonlinear systems. Automatica, 40(6):957–975, 2004.
  21. W. J. Rugh. Nonlinear system theory. Johns Hopkins University Press, 1981. Web version prepared by the author in 2002.
  22. Finite sample identification of bilinear dynamical systems. In Proc. IEEE Conf. Dec. Contr., pages 6705–6711, 2022.
  23. C. W. Scherer and S. Weiland. Linear matrix inequalities in control. Lecture Notes, Dutch Institute for Systems and Control.
  24. Input classes for identifiability of bilinear systems. IEEE Trans. Autom. Control, 54(2):195–207, 2009.
  25. Control design for bilinear systems with a guaranteed region of stability: An LMI-based approach. In Med. Conf. Control Automation, pages 809–814, 2009.
  26. From noisy data to feedback controllers: Nonconservative design via a matrix S-lemma. IEEE Trans. Autom. Contr., 67(1):162–175, 2020.
  27. Z. Yuan and J. Cortés. Data-driven optimal control of bilinear systems. IEEE Control Systems Letters, 6:2479–2484, 2022.

Summary

We haven't generated a summary for this paper yet.