Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmentation-Guided Knee Radiograph Generation using Conditional Diffusion Models (2404.03541v1)

Published 4 Apr 2024 in eess.IV and cs.CV

Abstract: Deep learning-based medical image processing algorithms require representative data during development. In particular, surgical data might be difficult to obtain, and high-quality public datasets are limited. To overcome this limitation and augment datasets, a widely adopted solution is the generation of synthetic images. In this work, we employ conditional diffusion models to generate knee radiographs from contour and bone segmentations. Remarkably, two distinct strategies are presented by incorporating the segmentation as a condition into the sampling and training process, namely, conditional sampling and conditional training. The results demonstrate that both methods can generate realistic images while adhering to the conditioning segmentation. The conditional training method outperforms the conditional sampling method and the conventional U-Net.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. F. Isensee, J. Petersen, A. Klein, D. Zimmerer, P. F. Jaeger, S. Kohl, J. Wasserthal, G. Koehler, T. Norajitra, S. Wirkert et al., “nnu-net: Self-adapting framework for u-net-based medical image segmentation,” arXiv preprint arXiv:1809.10486, 2018.
  2. M. Thies, F. Wagner, N. Maul, L. Folle, M. Meier, M. Rohleder, L.-S. Schneider, L. Pfaff, M. Gu, J. Utz et al., “Gradient-based geometry learning for fan-beam ct reconstruction,” Physics in Medicine & Biology, vol. 68, no. 20, p. 205004, 2023.
  3. F. Wagner, M. Thies, M. Gu, Y. Huang, S. Pechmann, M. Patwari, S. Ploner, O. Aust, S. Uderhardt, G. Schett et al., “Ultralow-parameter denoising: Trainable bilateral filter layers in computed tomography,” Medical Physics, vol. 49, no. 8, pp. 5107–5120, 2022.
  4. C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.
  5. B. Bier, K. Aschoff, C. Syben, M. Unberath, M. Levenston, G. Gold, R. Fahrig, and A. Maier, “Detecting anatomical landmarks for motion estimation in weight-bearing imaging of knees,” in Machine Learning for Medical Image Reconstruction: First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 1.   Springer, 2018, pp. 83–90.
  6. J.-H. Choi, R. Fahrig, A. Keil, T. F. Besier, S. Pal, E. J. McWalter, G. S. Beaupré, and A. Maier, “Fiducial marker-based correction for involuntary motion in weight-bearing c-arm ct scanning of knees. part i. numerical model-based optimization,” Medical physics, vol. 40, no. 9, p. 091905, 2013.
  7. C. Gao, B. D. Killeen, Y. Hu, R. B. Grupp, R. H. Taylor, M. Armand, and M. Unberath, “Synthetic data accelerates the development of generalizable learning-based algorithms for x-ray image analysis,” Nature Machine Intelligence, vol. 5, no. 3, pp. 294–308, 2023.
  8. T. Weber, M. Ingrisch, B. Bischl, and D. Rügamer, “Implicit embeddings via gan inversion for high resolution chest radiographs,” in MICCAI Workshop on Medical Applications with Disentanglements.   Springer, 2022, pp. 22–32.
  9. P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in neural information processing systems, vol. 34, pp. 8780–8794, 2021.
  10. S. Mei, F. Fan, and A. Maier, “Metal inpainting in cbct projections using score-based generative model,” in 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI).   IEEE, 2023, pp. 1–5.
  11. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
  12. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456, 2020.
  13. P. Vincent, “A connection between score matching and denoising autoencoders,” Neural computation, vol. 23, no. 7, pp. 1661–1674, 2011.
  14. C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon, “Sdedit: Guided image synthesis and editing with stochastic differential equations,” arXiv preprint arXiv:2108.01073, 2021.
  15. C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Image super-resolution via iterative refinement,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 4, pp. 4713–4726, 2022.
  16. G. Batzolis, J. Stanczuk, C.-B. Schönlieb, and C. Etmann, “Conditional image generation with score-based diffusion models,” arXiv preprint arXiv:2111.13606, 2021.
  17. M. Kistler, S. Bonaretti, M. Pfahrer, R. Niklaus, and P. Büchler, “The virtual skeleton database: an open access repository for biomedical research and collaboration,” Journal of medical Internet research, vol. 15, no. 11, p. e245, 2013.
  18. A. Maier, H. G. Hofmann, M. Berger, P. Fischer, C. Schwemmer, H. Wu, K. Müller, J. Hornegger, J.-H. Choi, C. Riess et al., “Conrad—a software framework for cone-beam imaging in radiology,” Medical physics, vol. 40, no. 11, p. 111914, 2013.
  19. M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. Barron, and R. Ng, “Fourier features let networks learn high frequency functions in low dimensional domains,” Advances in Neural Information Processing Systems, vol. 33, pp. 7537–7547, 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.