Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simultaneous State Estimation and Contact Detection for Legged Robots by Multiple-Model Kalman Filtering (2404.03444v1)

Published 4 Apr 2024 in cs.RO, cs.SY, and eess.SY

Abstract: This paper proposes an algorithm for combined contact detection and state estimation for legged robots. The proposed algorithm models the robot's movement as a switched system, in which different modes relate to different feet being in contact with the ground. The key element in the proposed algorithm is an interacting multiple-model Kalman filter, which identifies the currently-active mode defining contacts, while estimating the state. The rationale for the proposed estimation framework is that contacts (and contact forces) impact the robot's state and vice versa. This paper presents validation studies with a quadruped using (i) the high-fidelity simulator Gazebo for a comparison with ground truth values and a baseline estimator, and (ii) hardware experiments with the Unitree A1 robot. The simulation study shows that the proposed algorithm outperforms the baseline estimator, which does not simultaneous detect contacts. The hardware experiments showcase the applicability of the proposed algorithm and highlights the ability to detect contacts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. M. Bloesch, C. Gehring, P. Fankhauser, M. Hutter, M. A. Hoepflinger, and R. Siegwart, “State estimation for legged robots on unstable and slippery terrain,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6058–6064, 2013.
  2. M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D. Remy, and R. Siegwart, “State estimation for legged robots-consistent fusion of leg kinematics and IMU,” Robotics, vol. 17, pp. 17–24, 2013.
  3. PhD thesis, ETH Zurich, 2017.
  4. M. Camurri, M. Fallon, S. Bazeille, A. Radulescu, V. Barasuol, D. G. Caldwell, and C. Semini, “Probabilistic contact estimation and impact detection for state estimation of quadruped robots,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1023–1030, 2017.
  5. G. Bledt, P. M. Wensing, S. Ingersoll, and S. Kim, “Contact model fusion for event-based locomotion in unstructured terrains,” in IEEE Int. Conf. Robot. Autom., pp. 4399–4406, 2018.
  6. R. Hartley, J. Mangelson, L. Gan, M. G. Jadidi, J. M. Walls, R. M. Eustice, and J. W. Grizzle, “Legged robot state-estimation through combined forward kinematic and preintegrated contact factors,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4422–4429, 2018.
  7. D. Wisth, M. Camurri, and M. Fallon, “Robust legged robot state estimation using factor graph optimization,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4507–4514, 2019.
  8. R. Hartley, M. G. Jadidi, J. W. Grizzle, and R. M. Eustice, “Contact-aided invariant extended Kalman filtering for legged robot state estimation,” arXiv preprint arXiv:1805.10410, 2018.
  9. R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-aided invariant extended Kalman filtering for robot state estimation,” The International Journal of Robotics Research, vol. 39, no. 4, pp. 402–430, 2020.
  10. M. Camurri, M. Ramezani, S. Nobili, and M. Fallon, “Pronto: A multi-sensor state estimator for legged robots in real-world scenarios,” Frontiers in Robotics and AI, vol. 7, p. 68, 2020.
  11. S. Fahmi, G. Fink, and C. Semini, “On state estimation for legged locomotion over soft terrain,” IEEE Sensors Letters, vol. 5, no. 1, pp. 1–4, 2021.
  12. S. Teng, M. W. Mueller, and K. Sreenath, “Legged robot state estimation in slippery environments using invariant extended Kalman filter with velocity update,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3104–3110, 2021.
  13. J.-H. Kim, S. Hong, G. Ji, S. Jeon, J. Hwangbo, J.-H. Oh, and H.-W. Park, “Legged robot state estimation with dynamic contact event information,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6733–6740, 2021.
  14. T.-Y. Lin, R. Zhang, J. Yu, and M. Ghaffari, “Legged robot state estimation using invariant Kalman filtering and learned contact events,” arXiv preprint arXiv:2106.15713, 2021.
  15. Y. Kim, B. Yu, E. M. Lee, J.-h. Kim, H.-w. Park, and H. Myung, “STEP: state estimator for legged robots using a preintegrated foot velocity factor,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4456–4463, 2022.
  16. R. Buchanan, M. Camurri, F. Dellaert, and M. Fallon, “Learning inertial odometry for dynamic legged robot state estimation,” in Conference on Robot Learning, pp. 1575–1584, 2022.
  17. G. Welch and G. Bishop, “An introduction to the Kalman filter,” 1995.
  18. V. Lefkopoulos, M. Menner, A. Domahidi, and M. N. Zeilinger, “Interaction-aware motion prediction for autonomous driving: A multiple model Kalman filtering scheme,” IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 80–87, 2020.
  19. J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion in the MIT Cheetah 3 through convex model-predictive control,” in 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 1–9, 2018.
  20. A. Schperberg, S. Di Cairano, and M. Menner, “Auto-tuning of controller and online trajectory planner for legged robots,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7802–7809, 2022.
  21. Unitree Robotics, “GitHub repository for Unitree A1,” https:// github.com/unitreerobotics, accessed 2021-09.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com