Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Part-Attention Based Model Make Occluded Person Re-Identification Stronger (2404.03443v4)

Published 4 Apr 2024 in cs.CV

Abstract: The goal of occluded person re-identification (ReID) is to retrieve specific pedestrians in occluded situations. However, occluded person ReID still suffers from background clutter and low-quality local feature representations, which limits model performance. In our research, we introduce a new framework called PAB-ReID, which is a novel ReID model incorporating part-attention mechanisms to tackle the aforementioned issues effectively. Firstly, we introduce the human parsing label to guide the generation of more accurate human part attention maps. In addition, we propose a fine-grained feature focuser for generating fine-grained human local feature representations while suppressing background interference. Moreover, We also design a part triplet loss to supervise the learning of human local features, which optimizes intra/inter-class distance. We conducted extensive experiments on specialized occlusion and regular ReID datasets, showcasing that our approach outperforms the existing state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhihao Chen (66 papers)
  2. Yiyuan Ge (8 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com