Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bi-level Trajectory Optimization on Uneven Terrains with Differentiable Wheel-Terrain Interaction Model (2404.03307v3)

Published 4 Apr 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Navigation of wheeled vehicles on uneven terrain necessitates going beyond the 2D approaches for trajectory planning. Specifically, it is essential to incorporate the full 6dof variation of vehicle pose and its associated stability cost in the planning process. To this end, most recent works aim to learn a neural network model to predict the vehicle evolution. However, such approaches are data-intensive and fraught with generalization issues. In this paper, we present a purely model-based approach that just requires the digital elevation information of the terrain. Specifically, we express the wheel-terrain interaction and 6dof pose prediction as a non-linear least squares (NLS) problem. As a result, trajectory planning can be viewed as a bi-level optimization. The inner optimization layer predicts the pose on the terrain along a given trajectory, while the outer layer deforms the trajectory itself to reduce the stability and kinematic costs of the pose. We improve the state-of-the-art in the following respects. First, we show that our NLS based pose prediction closely matches the output from a high-fidelity physics engine. This result coupled with the fact that we can query gradients of the NLS solver, makes our pose predictor, a differentiable wheel-terrain interaction model. We further leverage this differentiability to efficiently solve the proposed bi-level trajectory optimization problem. Finally, we perform extensive experiments, and comparison with a baseline to showcase the effectiveness of our approach in obtaining smooth, stable trajectories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. V. Wiberg, E. Wallin, T. Nordfjell, and M. Servin, “Control of rough terrain vehicles using deep reinforcement learning,” IEEE robotics and automation letters, vol. 7, no. 1, pp. 390–397, 2021.
  2. A. Gattupalli, V. P. Eathakota, A. K. Singh, and K. Madhava Krishna, “A simulation framework for evolution on uneven terrains for synchronous drive robot,” Advanced Robotics, vol. 27, 2013.
  3. R. Agishev, T. Petříček, and K. Zimmermann, “Trajectory optimization using learned robot-terrain interaction model in exploration of large subterranean environments,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3365–3371, 2022.
  4. E. Papadopoulos and D. A. Rey, “The force-angle measure of tipover stability margin for mobile manipulators,” Vehicle System Dynamics, vol. 33, no. 1, pp. 29–48, 2000.
  5. R. Rubinstein, “The cross-entropy method for combinatorial and continuous optimization,” Methodology and computing in applied probability, vol. 1, pp. 127–190, 1999.
  6. M.-R. Bouguelia, R. Gonzalez, K. Iagnemma, and S. Byttner, “Unsupervised classification of slip events for planetary exploration rovers,” Journal of Terramechanics, vol. 73, pp. 95–106, 2017.
  7. S. Banerjee, J. Harrison, P. M. Furlong, and M. Pavone, “Adaptive meta-learning for identification of rover-terrain dynamics,” arXiv preprint arXiv:2009.10191, 2020.
  8. A. Ugenti, F. Vulpi, A. Milella, and G. Reina, “Learning and prediction of vehicle-terrain interaction from 3d vision,” in Multimodal Sensing and Artificial Intelligence: Technologies and Applications II, vol. 11785.   SPIE, 2021, pp. 167–173.
  9. A. Datar, C. Pan, and X. Xiao, “Learning to model and plan for wheeled mobility on vertically challenging terrain,” arXiv preprint arXiv:2306.11611, 2023.
  10. V. Šalanskỳ, K. Zimmermann, T. Petříček, and T. Svoboda, “Pose consistency kkt-loss for weakly supervised learning of robot-terrain interaction model,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5477–5484, 2021.
  11. V. Eathakota, G. Aditya, and M. Krishna, “Quasi-static motion planning on uneven terrain for a wheeled mobile robot,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2011, pp. 4314–4320.
  12. Z. Xu, Y. Chen, Z. Jian, J. Tan, X. Wang, and B. L. Liang, “Hybrid trajectory optimization for autonomous terrain traversal of articulated tracked robots,” IEEE Robotics and Automation Letters, vol. 9, no. 1, pp. 755–762, 2023.
  13. L. Xu, K. Chai, Z. Han, H. Liu, C. Xu, Y. Cao, and F. Gao, “An efficient trajectory planner for car-like robots on uneven terrain,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023, pp. 2853–2860.
  14. W. Feng, L. Ding, R. Zhou, C. Xu, H. Yang, H. Gao, G. Liu, and Z. Deng, “Learning-based end-to-end navigation for planetary rovers considering non-geometric hazards,” IEEE Robotics and Automation Letters, 2023.
  15. H. Hu, K. Zhang, A. H. Tan, M. Ruan, C. Agia, and G. Nejat, “A sim-to-real pipeline for deep reinforcement learning for autonomous robot navigation in cluttered rough terrain,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6569–6576, 2021.
  16. K. Weerakoon, A. J. Sathyamoorthy, U. Patel, and D. Manocha, “Terp: Reliable planning in uneven outdoor environments using deep reinforcement learning,” in International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 9447–9453.
  17. A. K. Singh and K. M. Krishna, “Feasible acceleration count: A novel dynamic stability metric and its use in incremental motion planning on uneven terrain,” Robotics and Autonomous Systems, vol. 79, pp. 156–171, 2016.
  18. S. Gould, R. Hartley, and D. Campbell, “Deep declarative networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 8, pp. 3988–4004, 2021.
  19. Z. Han, Y. Wu, T. Li, L. Zhang, L. Pei, L. Xu, C. Li, C. Ma, C. Xu, S. Shen et al., “An efficient spatial-temporal trajectory planner for autonomous vehicles in unstructured environments,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  20. D. Rey and E. Papadoupoulos, “Online automatic tipover prevention for mobile manipulators,” in Proc. of the IEEE International Conference on Intelligent Robot and Systems, vol. 3, 1997, pp. 1273–1278.
  21. N. Chakraborty and A. Ghosal, “Kinematics of wheeled mobile robots on uneven terrain,” Mechanism and machine theory, vol. 39, no. 12, pp. 1273–1287, 2004.
  22. “Jax,” https://github.com/google/jax.
  23. N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot simulator,” in IEEE/RSJ international conference on intelligent robots and systems, 2004, pp. 2149–2154.
  24. “Blender,” https://www.blender.org/.
Citations (1)

Summary

We haven't generated a summary for this paper yet.