Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Traversability-aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain (2404.03274v1)

Published 4 Apr 2024 in cs.RO

Abstract: Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on exteroceptive sensors often leads to the inability to reach the goal due to a high prevalence of non-traversable areas. In this paper, we consider traversability as a relative value that integrates the robot's internal state, such as speed and torque to exhibit resilient behavior to reach its goal successfully. We separate traversability into apparent traversability and relative traversability, then incorporate these distinctions in the optimization process of sampling-based planning and motion predictive control. Our method enables the robots to execute the desired behaviors more accurately while avoiding hazardous regions and getting stuck. Experiments conducted on simulation with 27 diverse types of mountainous terrain and real-world demonstrate the robustness of the proposed framework, with increasingly better performance observed in more complex environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. P. Papadakis, “Terrain traversability analysis methods for unmanned ground vehicles: A survey,” Engineering Applications of Artificial Intelligence, vol. 26, no. 4, pp. 1373–1385, 2013.
  2. L. C. Santos, A. S. Aguiar, F. N. Santos, A. Valente, J. B. Ventura, and A. J. Sousa, “Navigation stack for robots working in steep slope vineyard,” in Intelligent Systems and Applications: Proceedings of the 2020 Intelligent Systems Conference (IntelliSys) Volume 1.   Springer, 2021, pp. 264–285.
  3. Z. Zhao and L. Bi, “A new challenge: Path planning for autonomous truck of open-pit mines in the last transport section,” Applied Sciences, vol. 10, no. 18, p. 6622, 2020.
  4. T. Hines, K. Stepanas, F. Talbot, I. Sa, J. Lewis, E. Hernandez, N. Kottege, and N. Hudson, “Virtual surfaces and attitude aware planning and behaviours for negative obstacle navigation,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 4048–4055, 2021.
  5. M. Paton, M. P. Strub, T. Brown, R. J. Greene, J. Lizewski, V. Patel, J. D. Gammell, and I. A. Nesnas, “Navigation on the line: Traversability analysis and path planning for extreme-terrain rappelling rovers,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 7034–7041.
  6. S. L. Laubach, J. Burdick, and L. Matthies, “An autonomous path planner implemented on the rocky 7 prototype microrover,” in Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), vol. 1.   IEEE, 1998, pp. 292–297.
  7. M. Castelnovi, R. Arkin, and T. R. Collins, “Reactive speed control system based on terrain roughness detection,” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation.   IEEE, 2005, pp. 891–896.
  8. M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained mobile robot motion planning in state lattices,” Journal of Field Robotics, vol. 26, no. 3, pp. 308–333, 2009.
  9. Z. Jian, Z. Lu, X. Zhou, B. Lan, A. Xiao, X. Wang, and B. Liang, “Putn: A plane-fitting based uneven terrain navigation framework,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 7160–7166.
  10. L. Gan, R. Zhang, J. W. Grizzle, R. M. Eustice, and M. Ghaffari, “Bayesian spatial kernel smoothing for scalable dense semantic mapping,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 790–797, 2020.
  11. T. Shan, J. Wang, B. Englot, and K. Doherty, “Bayesian generalized kernel inference for terrain traversability mapping,” in Conference on Robot Learning.   PMLR, 2018, pp. 829–838.
  12. L. Wellhausen, A. Dosovitskiy, R. Ranftl, K. Walas, C. Cadena, and M. Hutter, “Where should i walk? predicting terrain properties from images via self-supervised learning,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1509–1516, 2019.
  13. M. A. Bekhti and Y. Kobayashi, “Regressed terrain traversability cost for autonomous navigation based on image textures,” Applied Sciences, vol. 10, no. 4, p. 1195, 2020.
  14. L. Gan, J. W. Grizzle, R. M. Eustice, and M. Ghaffari, “Energy-based legged robots terrain traversability modeling via deep inverse reinforcement learning,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 8807–8814, 2022.
  15. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  16. S. Koenig and M. Likhachev, “D^* lite,” Aaai/iaai, vol. 15, pp. 476–483, 2002.
  17. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.
  18. L. Ojeda, J. Borenstein, G. Witus, and R. Karlsen, “Terrain characterization and classification with a mobile robot,” Journal of field robotics, vol. 23, no. 2, pp. 103–122, 2006.
  19. Y. Tanaka, Y. Ji, A. Yamashita, and H. Asama, “Fuzzy based traversability analysis for a mobile robot on rough terrain,” in 2015 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2015, pp. 3965–3970.
  20. M. Ono, T. J. Fuchs, A. Steffy, M. Maimone, and J. Yen, “Risk-aware planetary rover operation: Autonomous terrain classification and path planning,” in 2015 IEEE aerospace conference.   IEEE, 2015, pp. 1–10.
  21. M. Thoresen, N. H. Nielsen, K. Mathiassen, and K. Y. Pettersen, “Path planning for ugvs based on traversability hybrid a,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1216–1223, 2021.
  22. S. Daftry, N. Abcouwer, T. Del Sesto, S. Venkatraman, J. Song, L. Igel, A. Byon, U. Rosolia, Y. Yue, and M. Ono, “Mlnav: Learning to safely navigate on martian terrains,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5461–5468, 2022.
  23. S. Siva, M. Wigness, J. G. Rogers, L. Quang, and H. Zhang, “Self-reflective terrain-aware robot adaptation for consistent off-road ground navigation,” The International Journal of Robotics Research, p. 02783649231225243, 2024.
  24. S. Siva, M. Wigness, J. Rogers, and H. Zhang, “Enhancing consistent ground maneuverability by robot adaptation to complex off-road terrains,” in 5th Annual Conference on Robot Learning, 2021.
  25. L. Wellhausen and M. Hutter, “Rough terrain navigation for legged robots using reachability planning and template learning,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 6914–6921.
  26. K. Weerakoon, A. J. Sathyamoorthy, U. Patel, and D. Manocha, “Terp: Reliable planning in uneven outdoor environments using deep reinforcement learning,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 9447–9453.
  27. E. Levina and P. Bickel, “The earth mover’s distance is the mallows distance: Some insights from statistics,” in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2.   IEEE, 2001, pp. 251–256.
  28. J. Reeds and L. Shepp, “Optimal paths for a car that goes both forwards and backwards,” Pacific journal of mathematics, vol. 145, no. 2, pp. 367–393, 1990.
  29. K. Kozłowski and D. Pazderski, “Modeling and control of a 4-wheel skid-steering mobile robot,” International journal of applied mathematics and computer science, vol. 14, no. 4, pp. 477–496, 2004.
  30. E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” 2016.
  31. G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive path integral control: From theory to parallel computation,” Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, 2017.
  32. W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2053–2073, 2022.
  33. M. Otte and E. Frazzoli, “Rrtx: Asymptotically optimal single-query sampling-based motion planning with quick replanning,” The International Journal of Robotics Research, vol. 35, no. 7, pp. 797–822, 2016.
Citations (1)

Summary

We haven't generated a summary for this paper yet.