Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FACTUAL: A Novel Framework for Contrastive Learning Based Robust SAR Image Classification (2404.03225v1)

Published 4 Apr 2024 in cs.CV and cs.LG

Abstract: Deep Learning (DL) Models for Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR), while delivering improved performance, have been shown to be quite vulnerable to adversarial attacks. Existing works improve robustness by training models on adversarial samples. However, by focusing mostly on attacks that manipulate images randomly, they neglect the real-world feasibility of such attacks. In this paper, we propose FACTUAL, a novel Contrastive Learning framework for Adversarial Training and robust SAR classification. FACTUAL consists of two components: (1) Differing from existing works, a novel perturbation scheme that incorporates realistic physical adversarial attacks (such as OTSA) to build a supervised adversarial pre-training network. This network utilizes class labels for clustering clean and perturbed images together into a more informative feature space. (2) A linear classifier cascaded after the encoder to use the computed representations to predict the target labels. By pre-training and fine-tuning our model on both clean and adversarial samples, we show that our model achieves high prediction accuracy on both cases. Our model achieves 99.7% accuracy on clean samples, and 89.6% on perturbed samples, both outperforming previous state-of-the-art methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. K. El-Darymli, E. W. Gill, P. Mcguire, D. Power, and C. Moloney, “Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review,” IEEE Access, vol. 4, pp. 6014–6058, 2016.
  2. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.6572
  3. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” in 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.   OpenReview.net, 2018. [Online]. Available: https://openreview.net/forum?id=rJzIBfZAb
  4. M. Kim, J. Tack, and S. J. Hwang, “Adversarial self-supervised contrastive learning,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/1f1baa5b8edac74eb4eaa329f14a0361-Abstract.html
  5. Z. Jiang, T. Chen, T. Chen, and Z. Wang, “Robust pre-training by adversarial contrastive learning,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/ba7e36c43aff315c00ec2b8625e3b719-Abstract.html
  6. Y. Xu, H. Sun, J. Chen, L. Lei, K. Ji, and G. Kuang, “Adversarial self-supervised learning for robust SAR target recognition,” Remote. Sens., vol. 13, no. 20, p. 4158, 2021. [Online]. Available: https://doi.org/10.3390/rs13204158
  7. P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learning,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
  8. T. Ye, R. Kannan, V. Prasanna, C. Busart, and L. Kaplan, “Realistic scatterer based adversarial attacks on sar image classifiers,” in 2023 IEEE International Radar Conference (RADAR), 2023, pp. 1–6.
  9. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” in 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2014. [Online]. Available: http://arxiv.org/abs/1312.6199
  10. K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum contrast for unsupervised visual representation learning,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020.   Computer Vision Foundation / IEEE, 2020, pp. 9726–9735. [Online]. Available: https://doi.org/10.1109/CVPR42600.2020.00975
  11. T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple framework for contrastive learning of visual representations,” in Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, ser. Proceedings of Machine Learning Research, vol. 119.   PMLR, 2020, pp. 1597–1607. [Online]. Available: http://proceedings.mlr.press/v119/chen20j.html
  12. J. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. Á. Pires, Z. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent - A new approach to self-supervised learning,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
  13. X. Yuan, Z. Lin, J. Kuen, J. Zhang, Y. Wang, M. Maire, A. Kale, and B. Faieta, “Multimodal contrastive training for visual representation learning,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021.   Computer Vision Foundation / IEEE, 2021, pp. 6995–7004. [Online]. Available: https://openaccess.thecvf.com/content/CVPR2021/html/Yuan_Multimodal_Contrastive_Training_for_Visual_Representation_Learning_CVPR_2021_paper.html
  14. U. Jain, A. Wilson, and V. Gulshan, “Multimodal contrastive learning for remote sensing tasks,” CoRR, vol. abs/2209.02329, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2209.02329
  15. T. Chen, S. Liu, S. Chang, Y. Cheng, L. Amini, and Z. Wang, “Adversarial robustness: From self-supervised pre-training to fine-tuning,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020.   Computer Vision Foundation / IEEE, 2020, pp. 696–705. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2020/html/Chen_Adversarial_Robustness_From_Self-Supervised_Pre-Training_to_Fine-Tuning_CVPR_2020_paper.html
  16. D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, “Using self-supervised learning can improve model robustness and uncertainty,” in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 15 637–15 648. [Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/a2b15837edac15df90721968986f7f8e-Abstract.html
  17. E. R. Keydel, S. W. Lee, and J. T. Moore, “MSTAR extended operating conditions: a tutorial,” in Algorithms for Synthetic Aperture Radar Imagery III, E. G. Zelnio and R. J. Douglass, Eds., vol. 2757, International Society for Optics and Photonics.   SPIE, 1996, pp. 228 – 242. [Online]. Available: https://doi.org/10.1117/12.242059
  18. S. Chen, H. Wang, F. Xu, and Y.-Q. Jin, “Target classification using the deep convolutional networks for sar images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 8, pp. 4806–4817, 2016.
  19. E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le, “Randaugment: Practical automated data augmentation with a reduced search space,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/d85b63ef0ccb114d0a3bb7b7d808028f-Abstract.html
  20. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016.   IEEE Computer Society, 2016, pp. 770–778. [Online]. Available: https://doi.org/10.1109/CVPR.2016.90
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com