Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stabilization in two-species chemotaxis systems with singular sensitivity and Lotka-Volterra competitive kinetics (2404.03158v1)

Published 4 Apr 2024 in math.AP and math.DS

Abstract: The current paper is concerned with the stabilization in the following parabolic-parabolic-elliptic chemotaxis system with singular sensitivity and Lotka-Volterra competitive kinetics, \begin{equation} \begin{cases} u_t=\Delta u-\chi_1 \nabla\cdot (\frac{u}{w} \nabla w)+u(a_1-b_1u-c_1v) ,\quad &x\in \Omega\cr v_t=\Delta v-\chi_2 \nabla\cdot (\frac{v}{w} \nabla w)+v(a_2-b_2v-c_2u),\quad &x\in \Omega\cr 0=\Delta w-\mu w +\nu u+ \lambda v,\quad &x\in \Omega \cr \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=\frac{\partial w}{\partial n}=0,\quad &x\in\partial\Omega, \end{cases} \end{equation} where $\Omega \subset \mathbb{R}N$ is a bounded smooth domain, and $\chi_i,a_i, b_i, c_i$ ($i=1,2$) and $\mu,\, \nu, \, \lambda$ are positive constants. In [25], we proved that for any given nonnegative initial data $u_0,v_0\in C0(\bar\Omega)$ with $u_0+v_0\not \equiv 0$, (0.1) has a unique globally defined classical solution provided that $\min{a_1,a_2}$ is large relative to $\chi_1,\chi_2$, and $u_0+v_0$ is not small in the case that $(\chi_1-\chi_2)2\le \max{4\chi_1,4\chi_2}$ and $u_0+v_0$ is neither small nor big in the case that $(\chi_1-\chi_2)2>\max{4\chi_1,4\chi_2}$. In this paper, we proved that (0.1) has a unique positive constant solution $(u,v^,w*)$, where $$ u*=\frac{a_1b_2-c_1a_2}{b_1b_2-c_1c_2},\quad v*=\frac{b_1a_2-a_1c_2}{b_1b_2-c_1c_2}, \quad w=\frac{\nu}{\mu}u^+\frac{\lambda}{\mu} v*. $$ We obtain some explicit conditions on $\chi_1,\chi_2$ which ensure that the positive constant solution $(u,v^,w*)$ is globally stable in the sense that for any given nonnegative initial data $u_0,v_0\in C0(\bar\Omega)$ with $u_0\not \equiv 0$ and $v_0\not \equiv 0$, $$ \lim_{t\to\infty}\Big(|u(t,\cdot;u_0,v_0)-u*|_\infty +|v(t,\cdot;u_0,v_0)-v|_\infty+|w(t,\cdot;u_0,v_0)-w^|_\infty\Big)=0. $$

Citations (2)

Summary

We haven't generated a summary for this paper yet.