Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design and Evaluation of a Compact 3D End-effector Assistive Robot for Adaptive Arm Support (2404.03149v1)

Published 4 Apr 2024 in cs.RO

Abstract: We developed a 3D end-effector type of upper limb assistive robot, named as Assistive Robotic Arm Extender (ARAE), that provides transparency movement and adaptive arm support control to achieve home-based therapy and training in the real environment. The proposed system composes five degrees of freedom, including three active motors and two passive joints at the end-effector module. The core structure of the system is based on a parallel mechanism. The kinematic and dynamic modeling are illustrated in detail. The proposed adaptive arm support control framework calculates the compensated force based on the estimated human arm posture in 3D space. It firstly estimates human arm joint angles using two proposed methods: fixed torso and sagittal plane models without using external sensors such as IMUs, magnetic sensors, or depth cameras. The experiments were carried out to evaluate the performance of the two proposed angle estimation methods. Then, the estimated human joint angles were input into the human upper limb dynamics model to derive the required support force generated by the robot. The muscular activities were measured to evaluate the effects of the proposed framework. The obvious reduction of muscular activities was exhibited when participants were tested with the ARAE under an adaptive arm gravity compensation control framework. The overall results suggest that the ARAE system, when combined with the proposed control framework, has the potential to offer adaptive arm support. This integration could enable effective training with Activities of Daily Living (ADLs) and interaction with real environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. N. E. Mayo, S. Wood-Dauphinee, R. Coˆte, L. Durcan, and J. Carlton, “Activity, participation, and quality of life 6 months poststroke,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 8, pp. 1035–1042, 2002.
  2. R. A. Bos, C. J. Haarman, T. Stortelder, K. Nizamis, J. L. Herder, A. H. Stienen, and D. H. Plettenburg, “A structured overview of trends and technologies used in dynamic hand orthoses,” Journal of Neuroengineering and Rehabilitation, vol. 13, no. 1, pp. 1–25, 2016.
  3. P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, “A survey on robotic devices for upper limb rehabilitation,” Journal of Neuroengineering and Rehabilitation, vol. 11, no. 1, pp. 1–29, 2014.
  4. H. M. Qassim and W. Wan Hasan, “A review on upper limb rehabilitation robots,” Applied Sciences, vol. 10, no. 19, p. 6976, 2020.
  5. T. Nef, M. Mihelj, G. Colombo, and R. Riener, “Armin-robot for rehabilitation of the upper extremities,” in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.   IEEE, 2006, pp. 3152–3157.
  6. Y. Zimmermann, M. Sommerhalder, P. Wolf, R. Riener, and M. Hutter, “Anyexo 2.0: A fully actuated upper-limb exoskeleton for manipulation and joint-oriented training in all stages of rehabilitation,” IEEE Transactions on Robotics, 2023.
  7. N. Jarrassé and G. Morel, “Connecting a human limb to an exoskeleton,” IEEE Transactions on Robotics, vol. 28, no. 3, pp. 697–709, 2011.
  8. J. Sun, Y. Shen, and J. Rosen, “Sensor reduction, estimation, and control of an upper-limb exoskeleton,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1012–1019, 2021.
  9. H. Matsuki, K. Nagano, and Y. Fujimoto, “Bilateral drive gear—a highly backdrivable reduction gearbox for robotic actuators,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 6, pp. 2661–2673, 2019.
  10. L. Luo, L. Peng, C. Wang, and Z.-G. Hou, “A greedy assist-as-needed controller for upper limb rehabilitation,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, pp. 3433–3443, 2019.
  11. H. I. Krebs, B. T. Volpe, D. Williams, J. Celestino, S. K. Charles, D. Lynch, and N. Hogan, “Robot-aided neurorehabilitation: a robot for wrist rehabilitation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 3, pp. 327–335, 2007.
  12. J. Fong, V. Crocher, Y. Tan, D. Oetomo, and I. Mareels, “Emu: A transparent 3d robotic manipulandum for upper-limb rehabilitation,” in 2017 International Conference on Rehabilitation Robotics (ICORR).   IEEE, 2017, pp. 771–776.
  13. C. Duret, A.-G. Grosmaire, and H. I. Krebs, “Robot-assisted therapy in upper extremity hemiparesis: overview of an evidence-based approach,” Frontiers in neurology, p. 412, 2019.
  14. G. Kramer, G. R. Romer, and H. J. Stuyt, “Design of a dynamic arm support (d as) for gravity compensation,” in 2007 IEEE 10th International Conference on Rehabilitation Robotics.   IEEE, 2007, pp. 1042–1048.
  15. J. Lobo-Prat, A. Q. Keemink, B. F. Koopman, A. H. Stienen, and P. H. Veltink, “Adaptive gravity and joint stiffness compensation methods for force-controlled arm supports,” in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR).   IEEE, 2015, pp. 478–483.
  16. Y. Zimmermann, E. B. Küçüktabak, F. Farshidian, R. Riener, and M. Hutter, “Towards dynamic transparency: Robust interaction force tracking using multi-sensory control on an arm exoskeleton,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 7417–7424.
  17. L. Luo, L. Peng, Z. Hou, and W. Wang, “Design and control of a 3-dof rehabilitation robot for forearm and wrist,” in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).   IEEE, 2017, pp. 4127–4130.
  18. S. Dalla Gasperina, L. Roveda, A. Pedrocchi, F. Braghin, and M. Gandolla, “Review on patient-cooperative control strategies for upper-limb rehabilitation exoskeletons,” Frontiers in Robotics and AI, vol. 8, p. 745018, 2021.
  19. V. Crocher, J. Fong, T. J. Bosch, Y. Tan, I. Mareels, and D. Oetomo, “Upper limb deweighting using underactuated end-effector-based backdrivable manipulanda,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2116–2122, 2018.
  20. X. Yun, E. R. Bachmann, H. Moore, and J. Calusdian, “Self-contained position tracking of human movement using small inertial/magnetic sensor modules,” in Proceedings 2007 IEEE International Conference on Robotics and Automation.   IEEE, 2007, pp. 2526–2533.
  21. S. C. Cuthbert and G. J. Goodheart Jr, “On the reliability and validity of manual muscle testing: a literature review,” Chiropractic & osteopathy, vol. 15, no. 1, p. 4, 2007.
  22. S. Yang, L. Luo, M. Liu, J. Chen, W. C. Law, M. Yuan, L. Li, and W. T. Ang, “Adaptive gravity compensation framework based on human upper limb model for assistive robotic arm extender,” in 2023 International Conference on Rehabilitation Robotics (ICORR).   IEEE, 2023, pp. 1–6.
  23. F. Just, Ö. Özen, S. Tortora, V. Klamroth-Marganska, R. Riener, and G. Rauter, “Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods,” Journal of neuroengineering and rehabilitation, vol. 17, no. 1, pp. 1–17, 2020.
  24. N. Paine, S. Oh, and L. Sentis, “Design and control considerations for high-performance series elastic actuators,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 1080–1091, 2013.
  25. S. Yu, T.-H. Huang, X. Yang, C. Jiao, J. Yang, Y. Chen, J. Yi, and H. Su, “Quasi-direct drive actuation for a lightweight hip exoskeleton with high backdrivability and high bandwidth,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1794–1802, 2020.
  26. H. J. Hermens, B. Freriks, C. Disselhorst-Klug, and G. Rau, “Development of recommendations for semg sensors and sensor placement procedures,” Journal of electromyography and Kinesiology, vol. 10, no. 5, pp. 361–374, 2000.
  27. E. Clancy, F. Negro, and D. Farina, “Single-channel techniques for information extraction from the surface emg signal,” Surface electromyography: physiology, engineering, and applications, pp. 91–125, 2016.
  28. M. Cirstea and M. F. Levin, “Compensatory strategies for reaching in stroke,” Brain, vol. 123, no. 5, pp. 940–953, 2000.
  29. S. Lee, Y.-S. Lee, and J. Kim, “Automated evaluation of upper-limb motor function impairment using fugl-meyer assessment,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 1, pp. 125–134, 2017.
  30. Y. Hwang, S. Lee, J. Hong, and J. Kim, “A novel end-effector robot system enabling to monitor upper-extremity posture during robot-aided planar reaching movements,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3035–3041, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Sibo Yang (3 papers)
  2. Lincong Luo (1 paper)
  3. Wei Chuan Law (1 paper)
  4. Youlong Wang (1 paper)
  5. Lei Li (1293 papers)
  6. Wei Tech Ang (12 papers)

Summary

We haven't generated a summary for this paper yet.