Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Generating Circuits -- Demystified (2404.02912v1)

Published 4 Mar 2024 in cs.CC and cs.AI

Abstract: Zhang et al. (ICML 2021, PLMR 139, pp. 12447-1245) introduced probabilistic generating circuits (PGCs) as a probabilistic model to unify probabilistic circuits (PCs) and determinantal point processes (DPPs). At a first glance, PGCs store a distribution in a very different way, they compute the probability generating polynomial instead of the probability mass function and it seems that this is the main reason why PGCs are more powerful than PCs or DPPs. However, PGCs also allow for negative weights, whereas classical PCs assume that all weights are nonnegative. One of the main insights of our paper is that the negative weights are responsible for the power of PGCs and not the different representation. PGCs are PCs in disguise, in particular, we show how to transform any PGC into a PC with negative weights with only polynomial blowup. PGCs were defined by Zhang et al. only for binary random variables. As our second main result, we show that there is a good reason for this: we prove that PGCs for categorial variables with larger image size do not support tractable marginalization unless NP = P. On the other hand, we show that we can model categorial variables with larger image size as PC with negative weights computing set-multilinear polynomials. These allow for tractable marginalization. In this sense, PCs with negative weights strictly subsume PGCs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Polynomial semantics of tractable probabilistic circuits. arXiv 2402.09085, 2024.
  2. Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):273–302, 1996. ISSN 0004-3702. doi:https://doi.org/10.1016/0004-3702(94)00092-1. URL https://www.sciencedirect.com/science/article/pii/0004370294000921.
  3. On the expressive efficiency of sum product networks. CoRR, abs/1411.7717, 2014. URL http://arxiv.org/abs/1411.7717.
  4. Learning with mixtures of trees. J. Mach. Learn. Res., 1:1–48, 2000. URL http://jmlr.org/papers/v1/meila00a.html.
  5. Probabilistic Graphical Models Principles and Techniques. MIT Press, 2009.
  6. Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. Journal of Statistical Physics, 121:291–317, 2005.
  7. Determinantal point processes for machine learning. Foundations and Trends® in Machine Learning, 5(2–3):123–286, 2012. ISSN 1935-8237. doi:10.1561/2200000044. URL http://dx.doi.org/10.1561/2200000044.
  8. A. Darwiche. Modeling and reasoning with Bayesian networks. Cambridge University Press, 2009.
  9. Probabilistic sentential decision diagrams. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press, 2014. URL http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8005.
  10. Sum-product networks: A new deep architecture. CoRR, abs/1202.3732, 2012. URL http://arxiv.org/abs/1202.3732.
  11. On the relationship between probabilistic circuits and determinantal point processes. In Ryan P. Adams and Vibhav Gogate, editors, Proceedings of the Thirty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2020, virtual online, August 3-6, 2020, volume 124 of Proceedings of Machine Learning Research, pages 1188–1197. AUAI Press, 2020. URL http://proceedings.mlr.press/v124/zhang20c.html.
  12. Probabilistic generating circuits. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 12447–12457. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/zhang21i.html.
  13. Probabilistic circuits: A unifying framework for tractable probabilistic models. Technical report, UCLA, Oct 2020. URL http://starai.cs.ucla.edu/papers/ProbCirc20.pdf.
  14. Smoothing structured decomposable circuits. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 11412–11422, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/940392f5f32a7ade1cc201767cf83e31-Abstract.html.
  15. Split-kl and pac-bayes-split-kl inequalities for ternary random variables. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/49ffa271264808cf500ea528ed8ec9b3-Abstract-Conference.html.
  16. Pac-bayes un-expected bernstein inequality. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 12180–12191, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/3dea6b598a16b334a53145e78701fa87-Abstract.html.
  17. Combating label noise in deep learning using abstention. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 6234–6243. PMLR, 2019. URL http://proceedings.mlr.press/v97/thulasidasan19a.html.
  18. On inference and learning with probabilistic generating circuits. In Robin J. Evans and Ilya Shpitser, editors, Uncertainty in Artificial Intelligence, UAI 2023, July 31 - 4 August 2023, Pittsburgh, PA, USA, volume 216 of Proceedings of Machine Learning Research, pages 829–838. PMLR, 2023. URL https://proceedings.mlr.press/v216/harviainen23b.html.
  19. Markus Bläser. Not all strongly rayleigh distributions have small probabilistic generating circuits. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages 2592–2602. PMLR, 2023. URL https://proceedings.mlr.press/v202/blaser23a.html.
  20. A selection of lower bounds in arithmetic circuit complexity, 2021. URL https://github.com/dasarpmar/lowerbounds-survey/releases/tag/v9.0.3. Version 2021-07-27.
  21. Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, volume 7. Springer Berlin, Heidelberg, 2000.
  22. Christos Papadimitriou. Computational Complexity. Addison Welsey, 1994.
  23. Computational complexity: a modern approach. Cambridge University Press, 2009.
  24. Approximating the permanent of graphs with large factors. Theoretical Computer Science, 102(2):283–305, 1992. ISSN 0304-3975. doi:https://doi.org/10.1016/0304-3975(92)90234-7. URL https://www.sciencedirect.com/science/article/pii/0304397592902347.
  25. The complexity of the cover polynomials for planar graphs of bounded degree. In Filip Murlak and Piotr Sankowski, editors, Mathematical Foundations of Computer Science 2011, pages 96–107, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-22993-0.
  26. Volker Strassen. Vermeidung von Divisionen. Journal für die reine und angewandte Mathematik, 264:184–202, 1973. URL http://eudml.org/doc/151394.
  27. On fast multiplication of polynomials over arbitrary algebras. Acta Informatica, 28(7):693–701, 1991. doi:10.1007/BF01178683. URL https://doi.org/10.1007/BF01178683.
  28. Probabilistic circuits: Representations, inference, learning and applications. AAAI Tutorial, 2020.

Summary

We haven't generated a summary for this paper yet.