Scalable quantum detector tomography by high-performance computing (2404.02844v1)
Abstract: At large scales, quantum systems may become advantageous over their classical counterparts at performing certain tasks. Developing tools to analyse these systems at the relevant scales, in a manner consistent with quantum mechanics, is therefore critical to benchmarking performance and characterising their operation. While classical computational approaches cannot perform like-for-like computations of quantum systems beyond a certain scale, classical high-performance computing (HPC) may nevertheless be useful for precisely these characterisation and certification tasks. By developing open-source customised algorithms using high-performance computing, we perform quantum tomography on a megascale quantum photonic detector covering a Hilbert space of $106$. This requires finding $108$ elements of the matrix corresponding to the positive operator valued measure (POVM), the quantum description of the detector, and is achieved in minutes of computation time. Moreover, by exploiting the structure of the problem, we achieve highly efficient parallel scaling, paving the way for quantum objects up to a system size of $10{12}$ elements to be reconstructed using this method. In general, this shows that a consistent quantum mechanical description of quantum phenomena is applicable at everyday scales. More concretely, this enables the reconstruction of large-scale quantum sources, processes and detectors used in computation and sampling tasks, which may be necessary to prove their nonclassical character or quantum computational advantage.
- Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing. STOC ’11, pp. 333–342. ACM, New York, NY, USA (2011). https://doi.org/10.1145/1993636.1993682 Deng et al. [2023] Deng, Y.-H., Gu, Y.-C., Liu, H.-L., Gong, S.-Q., Su, H., Zhang, Z.-J., Tang, H.-Y., Jia, M.-H., Xu, J.-M., Chen, M.-C., Qin, J., Peng, L.-C., Yan, J., Hu, Y., Huang, J., Li, H., Li, Y., Chen, Y., Jiang, X., Gan, L., Yang, G., You, L., Li, L., Zhong, H.-S., Wang, H., Liu, N.-L., Renema, J.J., Lu, C.-Y., Pan, J.-W.: Gaussian Boson Sampling with Pseudo-Photon-Number-Resolving Detectors and Quantum Computational Advantage. Physical Review Letters 131(15), 150601 (2023) https://doi.org/10.1103/PhysRevLett.131.150601 Luis and Sánchez-Soto [1999] Luis, A., Sánchez-Soto, L.L.: Complete Characterization of Arbitrary Quantum Measurement Processes. Physical Review Letters 83(18), 3573–3576 (1999) https://doi.org/10.1103/PhysRevLett.83.3573 Fiurášek [2001] Fiurášek, J.: Maximum-likelihood estimation of quantum measurement. Physical Review A 64(2), 24102 (2001) https://doi.org/10.1103/PhysRevA.64.024102 D’Ariano et al. [2004] D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Deng, Y.-H., Gu, Y.-C., Liu, H.-L., Gong, S.-Q., Su, H., Zhang, Z.-J., Tang, H.-Y., Jia, M.-H., Xu, J.-M., Chen, M.-C., Qin, J., Peng, L.-C., Yan, J., Hu, Y., Huang, J., Li, H., Li, Y., Chen, Y., Jiang, X., Gan, L., Yang, G., You, L., Li, L., Zhong, H.-S., Wang, H., Liu, N.-L., Renema, J.J., Lu, C.-Y., Pan, J.-W.: Gaussian Boson Sampling with Pseudo-Photon-Number-Resolving Detectors and Quantum Computational Advantage. Physical Review Letters 131(15), 150601 (2023) https://doi.org/10.1103/PhysRevLett.131.150601 Luis and Sánchez-Soto [1999] Luis, A., Sánchez-Soto, L.L.: Complete Characterization of Arbitrary Quantum Measurement Processes. Physical Review Letters 83(18), 3573–3576 (1999) https://doi.org/10.1103/PhysRevLett.83.3573 Fiurášek [2001] Fiurášek, J.: Maximum-likelihood estimation of quantum measurement. Physical Review A 64(2), 24102 (2001) https://doi.org/10.1103/PhysRevA.64.024102 D’Ariano et al. [2004] D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Luis, A., Sánchez-Soto, L.L.: Complete Characterization of Arbitrary Quantum Measurement Processes. Physical Review Letters 83(18), 3573–3576 (1999) https://doi.org/10.1103/PhysRevLett.83.3573 Fiurášek [2001] Fiurášek, J.: Maximum-likelihood estimation of quantum measurement. Physical Review A 64(2), 24102 (2001) https://doi.org/10.1103/PhysRevA.64.024102 D’Ariano et al. [2004] D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fiurášek, J.: Maximum-likelihood estimation of quantum measurement. Physical Review A 64(2), 24102 (2001) https://doi.org/10.1103/PhysRevA.64.024102 D’Ariano et al. [2004] D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Deng, Y.-H., Gu, Y.-C., Liu, H.-L., Gong, S.-Q., Su, H., Zhang, Z.-J., Tang, H.-Y., Jia, M.-H., Xu, J.-M., Chen, M.-C., Qin, J., Peng, L.-C., Yan, J., Hu, Y., Huang, J., Li, H., Li, Y., Chen, Y., Jiang, X., Gan, L., Yang, G., You, L., Li, L., Zhong, H.-S., Wang, H., Liu, N.-L., Renema, J.J., Lu, C.-Y., Pan, J.-W.: Gaussian Boson Sampling with Pseudo-Photon-Number-Resolving Detectors and Quantum Computational Advantage. Physical Review Letters 131(15), 150601 (2023) https://doi.org/10.1103/PhysRevLett.131.150601 Luis and Sánchez-Soto [1999] Luis, A., Sánchez-Soto, L.L.: Complete Characterization of Arbitrary Quantum Measurement Processes. Physical Review Letters 83(18), 3573–3576 (1999) https://doi.org/10.1103/PhysRevLett.83.3573 Fiurášek [2001] Fiurášek, J.: Maximum-likelihood estimation of quantum measurement. Physical Review A 64(2), 24102 (2001) https://doi.org/10.1103/PhysRevA.64.024102 D’Ariano et al. [2004] D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Luis, A., Sánchez-Soto, L.L.: Complete Characterization of Arbitrary Quantum Measurement Processes. Physical Review Letters 83(18), 3573–3576 (1999) https://doi.org/10.1103/PhysRevLett.83.3573 Fiurášek [2001] Fiurášek, J.: Maximum-likelihood estimation of quantum measurement. Physical Review A 64(2), 24102 (2001) https://doi.org/10.1103/PhysRevA.64.024102 D’Ariano et al. [2004] D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fiurášek, J.: Maximum-likelihood estimation of quantum measurement. Physical Review A 64(2), 24102 (2001) https://doi.org/10.1103/PhysRevA.64.024102 D’Ariano et al. [2004] D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Luis, A., Sánchez-Soto, L.L.: Complete Characterization of Arbitrary Quantum Measurement Processes. Physical Review Letters 83(18), 3573–3576 (1999) https://doi.org/10.1103/PhysRevLett.83.3573 Fiurášek [2001] Fiurášek, J.: Maximum-likelihood estimation of quantum measurement. Physical Review A 64(2), 24102 (2001) https://doi.org/10.1103/PhysRevA.64.024102 D’Ariano et al. [2004] D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fiurášek, J.: Maximum-likelihood estimation of quantum measurement. Physical Review A 64(2), 24102 (2001) https://doi.org/10.1103/PhysRevA.64.024102 D’Ariano et al. [2004] D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Fiurášek, J.: Maximum-likelihood estimation of quantum measurement. Physical Review A 64(2), 24102 (2001) https://doi.org/10.1103/PhysRevA.64.024102 D’Ariano et al. [2004] D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum Calibration of Measurement Instrumentation. Physical Review Letters 93(25), 250407 (2004) https://doi.org/10.1103/PhysRevLett.93.250407 Lundeen et al. [2009] Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Lundeen, J.S., Feito, A., Coldenstrodt-Ronge, H., Pregnell, K.L., Silberhorn, C., Ralph, T.C., Eisert, J., Plenio, M.B., Walmsley, I.A.: Tomography of quantum detectors. Nature Physics 5(1), 27–30 (2009) https://doi.org/10.1038/nphys1133 Feito et al. [2009] Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Feito, A., Lundeen, J.S., Coldenstrodt-Ronge, H., Eisert, J., Plenio, M.B., Walmsley, I.A.: Measuring measurement: theory and practice. New Journal of Physics 11(9), 93038 (2009) https://doi.org/10.1088/1367-2630/11/9/093038 Coldenstrodt-Ronge et al. [2009] Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Coldenstrodt-Ronge, H.B., Lundeen, J.S., Pregnell, K.L., Feito, A., Smith, B.J., Mauerer, W., Silberhorn, C., Eisert, J., Plenio, M.B., Walmsley, I.A.: A proposed testbed for detector tomography. Journal of Modern Optics 56(2-3), 432–441 (2009) https://doi.org/10.1080/09500340802304929 Oripov et al. [2023] Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Oripov, B.G., Rampini, D.S., Allmaras, J., Shaw, M.D., Nam, S.W., Korzh, B., McCaughan, A.N.: A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622(7984), 730–734 (2023) https://doi.org/10.1038/s41586-023-06550-2 Brida et al. [2012] Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Brida, G., Ciavarella, L., Degiovanni, I.P., Genovese, M., Lolli, L., Mingolla, M.G., Piacentini, F., Rajteri, M., Taralli, E., Paris, M.G.A.: Quantum characterization of superconducting photon counters. New Journal of Physics 14(8), 85001 (2012) https://doi.org/10.1088/1367-2630/14/8/085001 Humphreys et al. [2015] Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Humphreys, P.C., Metcalf, B.J., Gerrits, T., Hiemstra, T., Lita, A.E., Nunn, J., Nam, S.W., Datta, A., Kolthammer, W.S., Walmsley, I.A.: Tomography of photon-number resolving continuous-output detectors. New Journal of Physics 17(10), 103044 (2015) https://doi.org/10.1088/1367-2630/17/10/103044 Schapeler et al. [2020] Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Schapeler, T., Philipp Höpker, J., Bartley, T.J.: Quantum detector tomography of a 2×\times×2 multi-pixel array of superconducting nanowire single photon detectors. Optics Express 28(22), 33035–33043 (2020) https://doi.org/10.1364/OE.404285 Endo et al. [2021] Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Endo, M., Sonoyama, T., Matsuyama, M., Okamoto, F., Miki, S., Yabuno, M., China, F., Terai, H., Furusawa, A.: Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Optics Express 29(8), 11728 (2021) https://doi.org/10.1364/OE.423142 2102.09712 Cai et al. [2021] Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Cai, Y., Chen, Y., Chen, X., Wu, G., Wu, E.: Quantum characteristics and applications of multi‐pixel photon counter. Microwave and Optical Technology Letters 63(8), 2052–2057 (2021) https://doi.org/10.1002/mop.32865 Fitzke et al. [2022] Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Fitzke, E., Krebs, R., Haase, T., Mengler, M., Alber, G., Walther, T.: Time-dependent POVM reconstruction for single-photon avalanche photo diodes using adaptive regularization. New Journal of Physics (2022) https://doi.org/10.1088/1367-2630/ac5004 Santana et al. [2023] Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Santana, T., Muñoz, C., Chunnilall, C.: Extending the quantum tomography of a quasi-photon-number-resolving detector (2023) https://doi.org/10.1364/opticaopen.24908667.v1 Cooper et al. [2014] Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Cooper, M., Karpiński, M., Smith, B.J.: Local mapping of detector response for reliable quantum state estimation. Nature Communications 5(1), 4332 (2014) https://doi.org/10.1038/ncomms5332 Schapeler et al. [2021] Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Schapeler, T., Höpker, J.P., Bartley, T.J.: Quantum detector tomography of a high dynamic-range superconducting nanowire single-photon detector. Superconductor Science and Technology 34(6), 64002 (2021) https://doi.org/10.1088/1361-6668/abee9a Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number-resolving detectors with hundreds of pixels. Physical Review A 108(5), 052611 (2023) https://doi.org/10.1103/PhysRevA.108.052611 Zhang et al. [2012] Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Zhang, L., Coldenstrodt-Ronge, H.B., Datta, A., Puentes, G., Lundeen, J.S., Jin, X.-M., Smith, B.J., Plenio, M.B., Walmsley, I.A.: Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photonics 6(6), 364–368 (2012) https://doi.org/10.1038/nphoton.2012.107 Morimoto et al. [2020] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A.C., Antolovic, I.M., Bruschini, C., Charbon, E.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346 (2020) https://doi.org/10.1364/OPTICA.386574 MOSEK ApS [2023] MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.1. (2023). http://docs.mosek.com/10.1/toolbox/index.html Diamond and Boyd [2016] Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016) Agrawal et al. [2018] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. Journal of Control and Decision 5(1), 42–60 (2018) https://doi.org/10.1080/23307706.2017.1397554 Bauer et al. [2024] Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Bauer, C., Kenter, T., Lass, M., Mazur, L., Meyer, M., Nitsche, H., Riebler, H., Schade, R., Schwarz, M., Winnwa, N., Wiens, A., Wu, X., Plessl, C., Simon, J.: Noctua 2 supercomputer. Journal of large-scale research facilities JLSRF (2024). In press. Bertsekas [1982] Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982) https://doi.org/10.1137/0320018 https://doi.org/10.1137/0320018 Landi and Loli Piccolomini [2008] Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numerical Algorithms 48(4), 279–300 (2008) https://doi.org/10.1007/s11075-008-9198-3 Schmidt et al. [2011] Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Schmidt, M., Kim, D., Sra, S.: Projected Newton-type Methods in Machine Learning. The MIT Press (2011). https://doi.org/10.7551/mitpress/8996.003.0013 Tiedau et al. [2019] Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Tiedau, J., Meyer-Scott, E., Nitsche, T., Barkhofen, S., Bartley, T.J., Silberhorn, C.: A high dynamic range optical detector for measuring single photons and bright light. Optics Express 27(1), 1–15 (2019) https://doi.org/10.1364/OE.27.000001 Liu et al. [2023] Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Liu, D.-S., Wang, J.-Q., Zou, C.-L., Ren, X.-F., Guo, G.-C.: Optimized detector tomography for photon-number resolving detectors with hundreds of pixels (2023). https://github.com/DS-Liu/Modified-detector-tomography Cheng et al. [2023] Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Cheng, R., Zhou, Y., Wang, S., Shen, M., Taher, T., Tang, H.X.: A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics 17(1), 112–119 (2023) https://doi.org/10.1038/s41566-022-01119-3 Eaton et al. [2023] Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Eaton, M., Hossameldin, A., Birrittella, R.J., Alsing, P.M., Gerry, C.C., Dong, H., Cuevas, C., Pfister, O.: Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics 17(1), 106–111 (2023) https://doi.org/10.1038/s41566-022-01105-9 Schade et al. [2024] Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Schade, R., Lass, M., Schapeler, T., Plessl, C., Bartley, T.J.: Parallel Quantum Detector Tomography Solver (pqdts). https://doi.org/10.5281/zenodo.10908474 . https://github.com/pc2/pqdts Fernandez and Williams [2010] Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010) https://doi.org/10.1109/TAES.2010.5461658 Powell [1969] Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Powell, M.J.: A method for nonlinear constraints in minimization problems. Optimization, 283–298 (1969) Hestenes [1969] Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969) https://doi.org/10.1007/BF00927673 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York, NY, USA (2006) Condat [2016] Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming 158(1), 575–585 (2016) https://doi.org/10.1007/s10107-015-0946-6 Message Passing Interface Forum [2023] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 4.1. (2023). https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf Dagum and Menon [1998] Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998) https://doi.org/10.1109/99.660313 Zhang et al. [2012] Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Zhang, L., Datta, A., Coldenstrodt-Ronge, H.B., Jin, X.-M., Eisert, J., Plenio, M.B., Walmsley, I.A.: Recursive quantum detector tomography. New Journal of Physics 14(11), 115005 (2012) https://doi.org/10.1088/1367-2630/14/11/115005 Chen et al. [2022] Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Chen, X., Xu, F., Xu, H., Zhang, L.: Efficient tomography of coherent optical detectors. Physical Review A 106(5), 051702 (2022) https://doi.org/10.1103/PhysRevA.106.L051702 Higham [1988] Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Higham, N.J.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) https://doi.org/10.1016/0024-3795(88)90223-6 Francisco and Gonçalves [2017] Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Francisco, J.B., Gonçalves, D.S.: A fixed-point method for approximate projection onto the positive semidefinite cone. Linear Algebra and its Applications 523, 59–78 (2017) https://doi.org/10.1016/j.laa.2017.02.014 Krämer et al. [2018] Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: QuantumOptics.jl: A Julia framework for simulating open quantum systems. Computer Physics Communications 227, 109–116 (2018) https://doi.org/10.1016/j.cpc.2018.02.004 Fousse et al. [2007] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468 Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007) https://doi.org/10.1145/1236463.1236468
- Timon Schapeler (11 papers)
- Robert Schade (12 papers)
- Michael Lass (10 papers)
- Christian Plessl (24 papers)
- Tim J. Bartley (38 papers)