Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermodynamic limits on general far-from-equilibrium molecular templating networks (2404.02791v2)

Published 3 Apr 2024 in physics.bio-ph, cond-mat.stat-mech, cs.IT, math.IT, and q-bio.MN

Abstract: Cells produce RNA and proteins via molecular templating networks. We show that information transmission in such networks is bounded by functions of a simple thermodynamic property of the network, regardless of complexity. Surprisingly, putative systems operating at this bound do not have a high flux around the network. Instead, they have low entropy production, with each product in a ``pseudo-equilibrium'' determined by a single pathway. These pseudo-equilibrium limits constrain information transmission for the overall network, even if individual templates are arbitrarily specific.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. F. Crick, Central dogma of molecular biology, Nature 227, 561 (1970).
  2. T. E. Ouldridge and P. R. ten Wolde, Fundamental costs in the production and destruction of persistent polymer copies, Physical Review Letters 118, 158103 (2017).
  3. J. D. Watson, Molecular biology of the gene, seventh edition. ed. (Benjamin-Cummings Publishing Company, Boston, 2014).
  4. J. J. Hopfield, Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity, Proceedings of the National Academy of Sciences of the United States of America 71, 4135 (1974).
  5. J. Ninio, Kinetic amplification of enzyme discrimination, Biochimie 57, 587 (1975).
  6. C. H. Bennett, Dissipation-error tradeoff in proofreading, BioSystems 11, 85 (1979).
  7. A. Murugan, D. A. Huse, and S. Leibler, Discriminatory proofreading regimes in nonequilibrium systems, Physical Review X 4, 021016 (2014).
  8. Q. Yu, A. B. Kolomeisky, and O. A. Igoshin, The energy cost and optimal design of networks for biological discrimination, Journal of the Royal Society Interface 19, 20210883 (2022).
  9. M. Sahoo and S. Klumpp, Backtracking dynamics of rna polymerase: pausing and error correction, Journal of Physics: Condensed Matter 25, 374104 (2013).
  10. M. Ehrenberg and C. Blomberg, Thermodynamic constraints on kinetic proofreading in biosynthetic pathways, Biophysical Journal 31, 333 (1980).
  11. F. Wong, A. Amir, and J. Gunawardena, Energy-speed-accuracy relation in complex networks for biological discrimination, Physical Review E 98, 012420 (2018).
  12. W. D. Piñeros and T. Tlusty, Kinetic proofreading and the limits of thermodynamic uncertainty, Physical Review E 101, 022415 (2020).
  13. M. Nguyen and S. Vaikuntanathan, Design principles for nonequilibrium self-assembly, Proceedings of the National Academy of Sciences of the United States of America 113, 14231 (2016).
  14. V. Galstyan and R. Phillips, Allostery and kinetic proofreading, The Journal of Physical Chemistry B 123, 10990 (2019).
  15. R. Rao and L. Peliti, Thermodynamics of accuracy in kinetic proofreading: dissipation and efficiency trade-offs, Journal of Statistical Mechanics: Theory and Experiment 2015, P06001 (2015).
  16. K. Banerjee, A. B. Kolomeisky, and O. A. Igoshin, Elucidating interplay of speed and accuracy in biological error correction, Proceedings of the National Academy of Sciences of the United States of America 114, 5183 (2017).
  17. D. Chiuchiù, Y. Tu, and S. Pigolotti, Error-speed correlations in biopolymer synthesis, Physical Review Letters 123, 038101 (2019).
  18. P. Sartori and S. Pigolotti, Kinetic versus energetic discrimination in biological copying, Physical Review Letters 110, 188101 (2013).
  19. P. Gaspard and D. Andrieux, Kinetics and thermodynamics of first-order markov chain copolymerization, The Journal of Chemical Physics 141, 044908 (2014).
  20. J. M. Poulton, P. R. Ten Wolde, and T. E. Ouldridge, Nonequilibrium correlations in minimal dynamical models of polymer copying, Proceedings of the National Academy of Sciences 116, 1946 (2019).
  21. S. Pigolotti and P. Sartori, Protocols for copying and proofreading in template-assisted polymerization, Journal of Statistical Physics 162, 1167 (2016).
  22. P. Sartori and S. Pigolotti, Thermodynamics of error correction, Physical Review X 5, 041039 (2015).
  23. J. M. Poulton and T. E. Ouldridge, Edge-effects dominate copying thermodynamics for finite-length molecular oligomers, New Journal of Physics 23, 063061 (2021).
  24. J. Juritz, J. M. Poulton, and T. E. Ouldridge, Minimal mechanism for cyclic templating of length-controlled copolymers under isothermal conditions, The Journal of Chemical Physics 156, 074103 (2022).
  25. C. H. Bennett, The thermodynamics of computation—a review, International Journal of Theoretical Physics 21, 905 (1982).
  26. T. E. Ouldridge, The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics, Natural Computing 17, 3 (2018).
  27. T. M. Cover and J. A. Thomas, Elements of information theory, second edition. ed. (Wiley-Interscience, Hoboken, N.J, 2006).
  28. C. E. Shannon, A mathematical theory of communication, The Bell system technical journal 27, 379 (1948).
  29. M. Polettini and M. Esposito, Irreversible thermodynamics of open chemical networks. i. emergent cycles and broken conservation laws, The Journal of Chemical Physics 141, 024117 (2014).
  30. R. Rao and M. Esposito, Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics, Phys. Rev. X 6, 041064 (2016).
  31. D. F. Anderson, G. Craciun, and T. G. Kurtz, Product-form stationary distributions for deficiency zero chemical reaction networks, Bulletin of Mathematical Biology 72, 1947 (2010).
  32. K.-M. Nam, R. Martinez-Corral, and J. Gunawardena, The linear framework: using graph theory to reveal the algebra and thermodynamics of biomolecular systems, Interface Focus 12, 20220013 (2022).
  33. U. Çetiner and J. Gunawardena, Reformulating nonequilibrium steady states and generalized hopfield discrimination, Physical Review E 106, 064128 (2022).
  34. C. Maes and K. Netočnỳ, Heat bounds and the blowtorch theorem, in Annales Henri Poincaré, Vol. 14 (Springer, 2013) pp. 1193–1202.
  35. M. Sáez, E. Feliu, and C. Wiuf, Linear elimination in chemical reaction networks, in Recent Advances in Differential Equations and Applications (Springer International Publishing, Cham, 2019) pp. 177–193.
  36. J. D. Mallory, O. A. Igoshin, and A. B. Kolomeisky, Do we understand the mechanisms used by biological systems to correct their errors?, The Journal of Physical Chemistry B 124, 9289 (2020).
  37. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports on progress in physics 75, 126001 (2012).
  38. T. E. Ouldridge, C. C. Govern, and P. R. ten Wolde, Thermodynamics of computational copying in biochemical systems, Phys. Rev. X 7, 021004 (2017).
  39. S. Ladame, Dynamic combinatorial chemistry: on the road to fulfilling the promise, Org. Biomol. Chem. 6, 219 (2008).
  40. S. Chaiken, A combinatorial proof of the all minors matrix tree theorem, SIAM Journal on Algebraic Discrete Methods 3, 319 (1982).
  41. S. M. Robinson, A short proof of cramer’s rule, Mathematics Magazine 43, 94 (1970).
Citations (2)

Summary

We haven't generated a summary for this paper yet.