Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact and Integration of Mini Photovoltaic Systems on Electric Power Distribution Grids (2404.02763v1)

Published 3 Apr 2024 in eess.SY and cs.SY

Abstract: This work analyzes the impact of varying concentrations mini-photovoltaic (MPV) systems, often referred to as balcony power plants, on the stability and control of the low-voltage (LV) grid. By local energy use and potentially reversing meter operation, we focus on how these MPV systems transform grid dynamics and elucidate consumer participation in the energy transition. We scrutinize the effects of these systems on power quality, power loss, transformer loading, and the functioning of other inverter-based voltage-regulating distributed energy resources (DER). Owing to the rise in renewable output from MPVs, the emerging bidirectional energy flow poses challenges for distribution grids abundant with DERs. Our case studies, featuring sensitivity analysis and comparison of distributed and decentralized DER control strategies, highlight that autonomous inverters are essential for providing ancillary services. With the growing use of battery energy storage (BES) systems in LV grids for these services, the need for adaptable DER control strategies becomes increasingly evident.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. Federal Ministry for Economic Affairs and Climate Action (BMWK), “Photovoltaic Strategy: Fields of Action and Measures for an Accelerated Expansion of Photovoltaics,” Federal Ministry for Economic Affairs and Climate Action, vol. 1, no. 1, pp. 1–42, May 2023. [Online]. Available: https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/photovoltaik-stategie-2023
  2. European Commission, “Commission Regulation (EU) 2016/631 of 14 April 2016 establishing a network code on requirements for grid connection of generators,” Official Journal of the European Union, vol. 1, no. 631, pp. 1–68, April 2016. [Online]. Available: http://data.europa.eu/eli/reg/2016/631/oj
  3. A. Poullikkas, G. Kourtis, and I. Hadjipaschalis, “A review of net metering mechanism for electricity renewable energy sources,” International Journal of Energy and Environment, vol. 4, pp. 975–1002, 01 2013.
  4. A. Gautier, J. Jacqmin, and J.-C. Poudou, “The prosumers and the grid,” Journal of Regulatory Economics, vol. 53, no. 1, pp. 100–126, jan 2018.
  5. D. of State Incentives for Renewables and E. (DSIRE). (2023) Net metering policies. dsireusa.org. [Online]. Available: https://www.dsireusa.org/resources/detailed-summary-maps/net-metering-policies-2/
  6. J. Bergner, R. Hoelger, and B. Praetorius, “The Market for Plug-In Solar Devices,” Hochschule für Technik und Wirtschaft HTW Berlin, Tech. Rep. 1, May 2022. [Online]. Available: https://solar.htw-berlin.de/studien/marktstudie-steckersolar-2022
  7. F. Geth, J. Tant, E. Haesen, J. Driesen, and R. Belmans, “Integration of energy storage in distribution grids,” in IEEE PES General Meeting.   Minneapolis: IEEE, July 2010, pp. 1–6.
  8. L. Thurner, A. Scheidler, F. Schafer, J.-H. Menke, J. Dollichon, F. Meier, S. Meinecke, and M. Braun, “Pandapower—an open-source python tool for convenient modeling, analysis, and optimization of electric power systems,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6510–6521, Nov. 2018.
  9. S. Meinecke, D. Sarajlić, S. R. Drauz, A. Klettke, L.-P. Lauven, C. Rehtanz, A. Moser, and M. Braun, “SimBench—a benchmark dataset of electric power systems to compare innovative solutions based on power flow analysis,” Energies, vol. 13, no. 12, p. 3290, June 2020.
  10. W. A. Omran, M. Kazerani, and M. M. A. Salama, “Investigation of methods for reduction of power fluctuations generated from large grid-connected photovoltaic systems,” IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 318–327, March 2011.
  11. T. Stetz, J. von Appen, F. Niedermeyer, G. Scheibner, R. Sikora, and M. Braun, “Twilight of the grids: The impact of distributed solar on germany?s energy transition,” IEEE Power and Energy Magazine, vol. 13, no. 2, pp. 50–61, 2015.
  12. C. Masters, “Voltage rise: the big issue when connecting embedded generation to long 11 kV overhead lines,” Power Engineering Journal, vol. 16, no. 1, pp. 5–12, Feb. 2002.
  13. G. Kerber, R. Witzmann, and H. Sappl, “Voltage limitation by autonomous reactive power control of grid connected photovoltaic inverters,” in 2009 Compatibility and Power Electronics.   Badajoz: IEEE, May 2009, pp. 129–133.
  14. G. Ari and Y. Baghzouz, “Impact of high PV penetration on voltage regulation in electrical distribution systems,” in International Conference on Clean Electrical Power (ICCEP).   Ischia: IEEE, June 2011, pp. 744–748.
  15. R. Tonkoski, D. Turcotte, and T. H. M. El-Fouly, “Impact of high PV penetration on voltage profiles in residential neighborhoods,” IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 518–527, July 2012.
  16. T. Stetz, F. Marten, and M. Braun, “Improved low voltage grid-integration of photovoltaic systems in germany,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 534–542, April 2013.
  17. J. von Appen, T. Stetz, M. Braun, and A. Schmiegel, “Local voltage control strategies for PV storage systems in distribution grids,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 1002–1009, March 2014.
  18. T. Stetz, K. Diwold, M. Kraiczy, D. Geibel, S. Schmidt, and M. Braun, “Techno-economic assessment of voltage control strategies in low voltage grids,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 2125–2132, July 2014.
  19. M. N. Kabir, Y. Mishra, G. Ledwich, Z. Y. Dong, and K. P. Wong, “Coordinated control of grid-connected photovoltaic reactive power and battery energy storage systems to improve the voltage profile of a residential distribution feeder,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 967–977, May 2014.
  20. M. Zeraati, M. E. H. Golshan, and J. M. Guerrero, “Distributed control of battery energy storage systems for voltage regulation in distribution networks with high PV penetration,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3582–3593, July 2018.
  21. M. C. Vargas, M. A. Mendes, and O. E. Batista, “Impacts of high PV penetration on voltage profile of distribution feeders under brazilian electricity regulation,” in 2018 13th IEEE International Conference on Industry Applications (INDUSCON).   Sao Paulo: IEEE, Nov. 2018, pp. 38–44.
  22. E. Demirok, P. C. González, K. H. B. Frederiksen, D. Sera, P. Rodriguez, and R. Teodorescu, “Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids,” IEEE Journal of Photovoltaics, vol. 1, no. 2, pp. 174–182, Oct. 2011.
  23. G. Matkar, D. K. Dheer, A. S. Vijay, and S. Doolla, “A simple mathematical approach to assess the impact of solar PV penetration on voltage profile of distribution network,” in National Power Electronics Conference (NPEC).   Pune: IEEE, Dec. 2017, pp. 209–214.
  24. N. K. Singh, A. Elrayyah, and M. Z. C. Wanik, “Analysis of voltage rise and optimal PV curtailment strategy for its mitigation,” in 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe).   The Hague: IEEE, Oct. 2020, pp. 610–614.
  25. D. Biel and J. M. Scherpen, “Active and reactive power regulation in single-phase pv inverters,” in 2018 European Control Conference (ECC).   IEEE, Jun. 2018.
  26. J. Wang, F. Luo, Z. Ji, Y. Sun, B. Ji, W. Gu, and J. Zhao, “An improved hybrid modulation method for the single-phase h6 inverter with reactive power compensation,” IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 7674–7683, Sep. 2018.
  27. German Institute for Standardisation Registered Association (DIN) and European Committee for Electrotechnical Standardization (CENELEC), “DIN EN 50160:2022-10, Voltage characteristics of electricity supplied by public distribution networks,” DIN Standards, vol. 2, no. 1, pp. 1–116, Oct. 2022. [Online]. Available: https://dx.doi.org/10.31030/3383427
  28. VDE FNN, “Generators connected to the low-voltage distribution network - Technical requirements for the connection to and parallel operation with low-voltage distribution networks,” VDE-AR-N 4105:2018-11 (Revision of VDE-AR-N 4105:2011-08), vol. 2, no. 1, pp. 1–96, Nov. 2018.
  29. B. Subhonmesh, S. H. Low, and K. M. Chandy, “Equivalence of branch flow and bus injection models,” in 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).   Monticello: IEEE, Oct. 2012, pp. 1893–1899.
  30. M. Farivar and S. H. Low, “Branch flow model: Relaxations and convexification—part i,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2554–2564, Aug. 2013.
  31. A. S. Akinyemi, K. Musasa, and I. E. Davidson, “Analysis of voltage rise phenomena in electrical power network with high concentration of renewable distributed generations,” Scientific Reports, vol. 12, no. 1, pp. 1–22, May 2022.
  32. M. Baran and F. Wu, “Optimal sizing of capacitors placed on a radial distribution system,” IEEE Transactions on Power Delivery, vol. 4, no. 1, pp. 735–743, 1989.
  33. K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Options for control of reactive power by distributed photovoltaic generators,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1063–1073, June 2011.
  34. Y. P. Agalgaonkar, B. C. Pal, and R. A. Jabr, “Distribution voltage control considering the impact of PV generation on tap changers and autonomous regulators,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 182–192, Jan. 2014.
  35. M. Baran and F. Wu, “Network reconfiguration in distribution systems for loss reduction and load balancing,” IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1401–1407, Apr. 1989.
  36. IEEE, “Ieee standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces,” IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), vol. 2, no. 1, pp. 1–138, April 2018.
  37. M. Naumann, R. C. Karl, C. N. Truong, A. Jossen, and H. C. Hesse, “Lithium-ion battery cost analysis in pv-household application,” Energy Procedia, vol. 73, pp. 37–47, jun 2015, 9th International Renewable Energy Storage Conference, IRES 2015.
  38. J. P. Schmidt, A. Weber, and E. Ivers-Tiffée, “A novel and fast method of characterizing the self-discharge behavior of lithium-ion cells using a pulse-measurement technique,” Journal of Power Sources, vol. 274, pp. 1231–1238, jan 2015.
  39. N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the American Statistical Association, vol. 44, no. 247, pp. 335–341, 1949. [Online]. Available: http://www.jstor.org/stable/2280232
  40. F. Marra, G. Yang, C. Traeholt, J. Ostergaard, and E. Larsen, “A decentralized storage strategy for residential feeders with photovoltaics,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 974–981, March 2014.
  41. V. Quezada, J. Abbad, and T. Roman, “Assessment of energy distribution losses for increasing penetration of distributed generation,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 533–540, 2006.
  42. P. Carvalho, P. Correia, and L. Ferreira, “Distributed reactive power generation control for voltage rise mitigation in distribution networks,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 766–772, May 2008.
  43. G. F. M. of Justice (BMJ), “Act on the supply of electricity and gas (energy industry act - enwg),” BMJ, vol. 272, no. 1, pp. 1–39, Oct. 2005, date of issue: 07.07.2005. Full citation: ”Energy Industry Act of 7 July 2005 (BGBl. I p. 1970; 3621), as last amended by Article 9 of the Act of 26 July 2023 (BGBl. 2023 I No. 202)”. Status: Last amended by Art. 9 G v. 12.10.2023 I No. 272. [Online]. Available: www.gesetze-im-internet.de
  44. R. E. Brown, “Impact of smart grid on distribution system design,” in 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.   IEEE, Jul. 2008.
  45. F. Dorfler, S. Bolognani, J. W. Simpson-Porco, and S. Grammatico, “Distributed control and optimization for autonomous power grids,” in 2019 18th European Control Conference (ECC).   IEEE, Jun. 2019.
  46. F. Mueller, S. de Jongh, X. Mu, M. Suriyah, and T. Leibfried, “Sector-coupled distribution grid analysis for centralized and decentralized energy optimization,” in 2023 58th International Universities Power Engineering Conference (UPEC).   IEEE, Aug. 2023.
  47. D. Wölfle, A. Vishwanath, and H. Schmeck, “A guide for the design of benchmark environments for building energy optimization,” in Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, ser. BuildSys ’20.   New York, NY, USA: Association for Computing Machinery, 2020, p. 220–229. [Online]. Available: https://doi.org/10.1145/3408308.3427614
  48. V. Beiranvand, W. Hare, and Y. Lucet, “Best practices for comparing optimization algorithms,” Optimization and Engineering, vol. 18, no. 4, pp. 815–848, 2017.
  49. M. Braun, T. Stetz, T. Reimann, B. Valov, and G. Arnold, “Optimal reactive power supply in distribution networks - technological and economic assessment for pv systems,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (EU PVSEC 2009), Hamburg, Germany, Sep. 2009.

Summary

We haven't generated a summary for this paper yet.