Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Urban Scaling Laws (2404.02642v1)

Published 3 Apr 2024 in physics.soc-ph

Abstract: Understanding how size influences the internal characteristics of a system is a crucial concern across various fields. Concepts like scale invariance, universalities, and fractals are fundamental to this inquiry and find application in biology, physics, and particularly urbanism. Size profoundly impacts how cities develop and function economically and socially. For example, what are the pros and cons of residing in larger cities? Is life really more expensive or less safe in larger cities? Or do they really offer more opportunities and generally higher incomes than smaller ones? To address such inquiries, we utilize theoretical tools from scaling theory, enabling a quantitative description of how a system's behavior changes across different scales, from micro to macro. Drawing parallels with research in biology and spatial economics, this chapter explores recent discoveries, ongoing progress, and unanswered questions regarding urban scaling.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (90)
  1. Singapore: World Scientific, 2000.
  2. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena. Oxford: Oxford University Press, 1987.
  3. 2017.
  4. J. Allman, Evolving Brains. 1999.
  5. A. Hemmingsen, “Energy metabolism as related to body size and respiratory surfaces, and its evolution.,” Rep Steno Mem Hosp Nord Insulinlab, vol. 9, no. 1-110, 1960.
  6. F. L. Ribeiro and W. R. Pereira, “a Gentle Introduction To Scaling Relations in Biological Systems,” Revista Brasileira de Ensino de Fisica, vol. 44, 2022.
  7. B. J. E. Geoffrey B. West, James H. Brown, “A General Model for the Origin of Allometric Scaling Laws in Biology,” Science, vol. 276, pp. 122–126, apr 1997.
  8. J. P. Delong, J. G. Okie, M. E. Moses, R. M. Sibly, and J. H. Brown, “Shifts in metabolic scaling , production , and ef fi ciency across major evolutionary transitions of life,” no. 14, 2010.
  9. L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, and G. B. West, “Growth, innovation, scaling, and the pace of life in cities.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 7301–6, apr 2007.
  10. L. M. A. Bettencourt, “The origins of scaling in cities,” Science, vol. 340, no. 6139, pp. 1438–41, 2013.
  11. F. L. Ribeiro, Joao Meirelles, F. F. Ferreira, and C. R. Neto, “A model of urban scaling laws based on distance-dependent interactions,” Royal Society Open Science, vol. 4, no. 160926, 2017.
  12. F. L. Ribeiro and D. Rybski, “Mathematical models to explain the origin of urban scaling laws,” Physics Reports, vol. 1012, pp. 1–39, 2023.
  13. M. Newman, “Power laws, Pareto distributions and Zipf’s law,” Contemporary physics, no. 1, 2005.
  14. A.-L. BARABÁSI, NETWORK SCIENCE THE SCALE-FREE PROPERTY.
  15. W. Does, N. York, H. So, and M. Doctors, “Why New York Is Just an Average City,” no. 50, pp. 1–10, 2017.
  16. T. Robiquet, “Rapport sur un mémoire addressé al?Académie Royale de Médecin par MM Sarrus et Rameaux.,” Bull Acad R Med Belg, vol. 3, pp. 1094–1100, 1839.
  17. L. von Bertalanffy, “Quantitative Laws in Metabolism and Growth,” The Quarterly Review of Biology, vol. 32, no. 3, pp. 217–231, 1949.
  18. A. T. Krogh, Respiratory Exchange of Animals and Man. London, UK,: Longmans, 1916.
  19. M. Kleiber, “Body size and metabolism,” Hilgardia, vol. 6, pp. 315–353, jan 1932.
  20. J. P. DeLong, J. G. Okie, M. E. Moses, R. M. Sibly, and J. H. Brown, “Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 29, pp. 12941–12945, 2010.
  21. G. B. West, “The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms,” Science, vol. 284, pp. 1677–1679, jun 1999.
  22. G. B. West and J. H. Brown, “Life’s Universal Scaling Laws,” Physics Today, no. September, 2004.
  23. V. M. Savage, E. J. Deeds, and W. Fontana, “Sizing up allometric scaling theory,” PLoS Computational Biology, vol. 4, no. 9, 2008.
  24. G. Kingsley Zipf, Selected studies of the principle of relative frequency in language. Harvard university press, 1932.
  25. G. K. Zipf, Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. 1949.
  26. F. Auerbach and A. Ciccone, “The Law of Population Concentration,” Environment and Planning B: Urban Analytics and City Science, vol. 50, no. 2, pp. 290–298, 2023.
  27. D. Rybski and A. Ciccone, “Auerbach , Lotka , Zipf – pioneers of power-law city-size distributions,” pp. 1–7, 2023.
  28. A. A. Toda, X. Gabaix, S. Gilchrist, R. Kirpalani, and N. Kocherlakota, “Zipf ’ s Law : A Microfoundation,” no. 2011, pp. 1–47, 2017.
  29. M. Batty, “Scaling in city size distributions,” Environment and Planning B: Urban Analytics and City Science, vol. 0, no. 0, pp. 1–3, 2023.
  30. A. MARSHALL, “The Growth of Economic Science, Appendix B of the Principles of Economics,” 1890.
  31. P. Krugman, “Urban concentration: the role of increasing returns and transport costs,” International Regional Science Review, vol. 19, no. 1-2, pp. 5–30, 1996.
  32. J. Jacobs, The life and death of great American cities. New York: Random House, 1961.
  33. J. Jacobs, The economy of cities. New York: Random house, 1969.
  34. T. J. Allen et al., “Managing the flow of technology: Technology transfer and the dissemination of technological information within the r&d organization,” MIT Press Books, vol. 1, 1984.
  35. E. L. Glaeser, H. D. Kallal, J. A. Scheinkman, and A. Shleifer, “Growth in cities,” Journal of political economy, vol. 100, no. 6, pp. 1126–1152, 1992.
  36. R. Martin and P. Sunley, “On the notion of regional economic resilience: conceptualization and explanation,” Journal of economic geography, vol. 15, no. 1, pp. 1–42, 2015.
  37. R. L. Moomaw, “Productivity and city size: a critique of the evidence,” The Quarterly Journal of Economics, vol. 96, no. 4, pp. 675–688, 1981.
  38. T. Tabuchi, “Urban agglomeration, capital augmenting technology, and labor market equilibrium,” Journal of Urban Economics, vol. 20, no. 2, pp. 211–228, 1986.
  39. S. S. Rosenthal and W. C. Strange, “Evidence on the nature and sources of agglomeration economies,” in Handbook of regional and urban economics, vol. 4, pp. 2119–2171, Elsevier, 2004.
  40. E. L. Glaeser and M. G. Resseger, “The complementarity between cities and skills,” Journal of Regional Science, vol. 50, no. 1, pp. 221–244, 2010.
  41. J. Lobo, L. M. Bettencourt, D. Strumsky, and G. B. West, “Urban scaling and the production function for cities,” PLoS One, vol. 8, no. 3, p. e58407, 2013.
  42. W. C. Wheaton and M. J. Lewis, “Urban wages and labor market agglomeration,” Journal of Urban Economics, vol. 51, no. 3, pp. 542–562, 2002.
  43. E. Glaeser, H. Kallal, J. Scheinkman, and A. Shleifer, “Growth in cities,” Journal of Political Economy, no. 100, pp. 1126–1152, 1992.
  44. S. S. Rosenthal, “Evidence on the Nature and Sources of Agglomeration Economies Stuart,” Handbook of Urban And Regional Economics, 2003.
  45. L. J. Pumain D, Paulus F, Vacchiani-Marcuzzo C, “An evolutionary theory for interpreting urban scaling laws,” Cybergeo: European Journal of Geography;, 2006.
  46. M. Batty, The new science of cities. MIT Press,, 2013.
  47. L. M. Bettencourt, J. Lobo, and D. Strumsky, “Invention in the city: Increasing returns to patenting as a scaling function of metropolitan size,” Research Policy, vol. 36, no. 1, pp. 107–120, 2007.
  48. Fabiano L. Ribeiro and Joao Meirelles, “Meta-analysis os the categories of urban variables related to scaling,” in preparation, 2024.
  49. J. Meirelles, C. R. Neto, F. F. Ferreira, F. L. Ribeiro, and C. R. Binder, “Evolution of urban scaling: Evidence from Brazil,” PLOS ONE, vol. 13, p. e0204574, oct 2018.
  50. M. Schläpfer, L. M. a. Bettencourt, S. Grauwin, M. Raschke, R. Claxton, Z. Smoreda, G. B. West, and C. Ratti, “The scaling of human interactions with city size.,” Journal of the Royal Society, Interface / the Royal Society, vol. 11, no. 98, pp. 20130789–, 2014.
  51. J. Jacobs, The economy of cities. Vintage, 1969.
  52. R. Florida, “Cities and the creative class,” City & community, vol. 2, no. 1, pp. 3–19, 2003.
  53. P. Gordon and S. Ikeda, “Does density matter?,” in Handbook of creative cities, Edward Elgar Publishing, 2011.
  54. F. L. Ribeiro and D. Rybski, “Mathematical models to explain the origin of urban scaling laws: a synthetic review,” arXiv preprint, pp. 1–22, 2021.
  55. A. J. Stier, M. G. Berman, and L. M. A. Bettencourt, “COVID-19 attack rate increases with city size,” arXiv preprint, 2020.
  56. E. Strano and V. Sood, “Rich and poor cities in Europe. An urban scaling approach to mapping the European economic transition,” PLoS ONE, vol. 11, no. 8, pp. 1–8, 2016.
  57. H. V. Ribeiro, M. Oehlers, A. I. Moreno-monroy, P. Kropp, and D. Rybski, “Effects of population distribution on urban scaling,” PLoS ONE, vol. 16, no. 1, 2021.
  58. J. R. Burger, J. G. Okie, I. A. Hatton, V. P. Weinberger, M. Shrestha, K. J. Liedtke, A. S. M. G. Kibria, K. C. Ernst, B. J. Enquist, and D. Kendal, “Global city densities : Re- examining urban scaling theory,” no. December, pp. 1–10, 2022.
  59. F. L. Ribeiro, J. Meirelles, V. M. Netto, C. R. Neto, and A. Baronchelli, “On the relation between Transversal and Longitudinal Scaling in Cities,” PLoS ONE, pp. 1–20, 2020.
  60. G. Xu, Z. Xu, Y. Gu, W. Lei, Y. Pan, J. Liu, and L. Jiao, “Scaling laws in intra-urban systems and over time at the district level in Shanghai, China,” Physica A: Statistical Mechanics and its Applications, vol. 560, no. September, p. 125162, 2020.
  61. Harvard University Press, 1964.
  62. Routledge New York, 2017.
  63. C. Cottineau, E. Hatna, E. Arcaute, and M. Batty, “Diverse cities or the systematic paradox of Urban Scaling Laws,” Computers, Environment and Urban Systems, vol. 63, pp. 80–94, 2017.
  64. E. Arcaute, E. Hatna, P. Ferguson, H. Youn, A. Johansson, and M. Batty, “Constructing cities, deconstructing scaling laws,” Journal of The Royal Society Interface, vol. 12, no. 102, p. 20140745, 2015.
  65. S. G. Ortman, A. H. F. Cabaniss, J. O. Sturm, and L. M. A. Bettencourt, “The pre-history of urban scaling,” PloS one, vol. 9, no. 2, p. e87902, 2014.
  66. D. Rybski, D. E. Reusser, A. L. Winz, C. Fichtner, T. Sterzel, and J. P. Kropp, “Cities as nuclei of sustainability?,” Environment and Planning B: Urban Analytics and City Science, vol. 44, no. 3, pp. 425–440, 2017.
  67. N. Z. Muller and A. Jha, “Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas,” PloS one, vol. 12, no. 8, p. e0181407, 2017.
  68. R. Louf and M. Barthelemy, “Modeling the polycentric transition of cities,” Physical Review Letters, vol. 111, no. 19, 2013.
  69. R. Louf and M. Barthelemy, “How congestion shapes cities: from mobility patterns to scaling,” Scientific reports, vol. 4, 2014.
  70. C. Molinero and S. Thurner, “How the geometry of cities explains urban scaling laws,” Interface, vol. 18, 2021.
  71. G. Spadon, A. C. de Carvalho, J. F. Rodrigues-Jr, and L. G. Alves, “Reconstructing commuters network using machine learning and urban indicators,” Scientific Reports, vol. 9, no. 1, pp. 1–13, 2019.
  72. L. G. Alves, D. Rybski, and H. V. Ribeiro, “Commuting network effect on urban wealth scaling,” Scientific Reports, vol. 11, no. 1, pp. 1–10, 2021.
  73. E. G. Altmann, “Spatial interactions in urban scaling laws,” PloS one, vol. 15, no. 12, pp. 1–12, 2020.
  74. A. Gomez-Lievano, H. J. Youn, and L. M. Bettencourt, “The statistics of urban scaling and their connection to Zipf’s law,” PLoS ONE, vol. 7, no. 7, 2012.
  75. M. Keuschnigg, S. Mutgan, and P. Hedström, “Urban scaling and the regional divide,” Science Advances, vol. 5, no. 1, 2019.
  76. C. Alexander, “A city is not a tree,” City, vol. 122, no. 1, pp. 58–62, 1966.
  77. B. Hillier, Space is the Machine. Cambridge: Cambridge University Press., 1996.
  78. Cambridge University Press, Cambridge, 1972.
  79. M. Batty, “Urban Modelling,” 1976.
  80. D. Rybski, E. Arcaute, and M. Batty, “Urban scaling laws,” Environment and Planning B: Urban Analytics and City Science, vol. 46, no. 9, pp. 1605–1610, 2019.
  81. C. C. Cottineau, E. Hatna, E. Arcaute, and M. Batty, “Paradoxical Interpretations of Urban Scaling Laws,” arXiv preprint arXiv:1507.07878, no. July, pp. 1–21, 2015.
  82. V. M. Netto, E. Brigatti, and C. Cacholas, “From urban form to information: Cellular configurations in different spatial cultures,” Environment and Planning B: Urban Analytics and City Science, vol. 50, no. 1, pp. 146–161, 2023.
  83. A. Coutrot, E. Manley, S. Goodroe, C. Gahnstrom, G. Filomena, D. Yesiltepe, R. C. Dalton, J. M. Wiener, C. Hölscher, M. Hornberger, et al., “Entropy of city street networks linked to future spatial navigation ability,” Nature, vol. 604, no. 7904, pp. 104–110, 2022.
  84. E. Arcaute and J. J. Ramasco, “Recent advances in urban system science: Models and data,” PLoS ONE, vol. 17, no. 8 August, pp. 1–16, 2022.
  85. R. Louf and M. Barthelemy, “Scaling: lost in the smog,” Environment and Planning B: Planning and Design, vol. 41, no. 5, pp. 767–769, 2014.
  86. J. C. Leitão, J. M. Miotto, M. Gerlach, and E. G. Altmann, “Is this scaling nonlinear?,” Royal Society Open Science, vol. 3, 2016.
  87. F. L. Ribeiro, “Física das Cidades,” Revista de Morfologia Urbana, vol. 8, no. 1, p. e00159, 2020.
  88. L. Bettencourt and G. West, “A unified theory of urban living.,” Nature, vol. 467, pp. 912–3, oct 2010.
  89. J. Lobo, M. Alberti, M. Allen-Dumas, E. Arcaute, M. Barthelemy, L. A. Bojorquez Tapia, S. Brail, L. Bettencourt, A. Beukes, W. Chen, R. Florida, M. Gonzalez, N. Grimm, M. Hamilton, C. Kempes, C. E. Kontokosta, C. Mellander, Z. P. Neal, S. Ortman, D. Pfeiffer, M. Price, A. Revi, C. Rozenblat, D. Rybski, M. Siemiatycki, S. T. Shutters, M. E. Smith, E. C. Stokes, D. Strumsky, G. West, D. White, J. Wu, V. C. Yang, A. York, and H. Youn, “Urban Science: Integrated Theory from the First Cities to Sustainable Metropolises,” SSRN Electronic Journal, 2020.
  90. F. L. Ribeiro, J. Lobo, and D. Rybski, “Zipf’s law and urban scaling: Hypotheses towards a Unified Urban Theory,” arXiv preprint, pp. 1–3, 2021.

Summary

  • The paper presents a power-law framework quantifying nonlinear relationships between urban metrics and city size.
  • The empirical analysis shows socio-economic indicators scale super-linearly while infrastructural measures scale sub-linearly.
  • The study underscores the need for integrating theory and data to better inform urban planning and policy decisions.

Urban Scaling Laws: A Comprehensive Overview

The paper, "Urban Scaling Laws" by Fabiano L. Ribeiro and Vinicius M. Netto, explores the application of scaling theory to urban systems, aiming to provide a detailed quantitative framework for understanding how various urban metrics change with city size. It parallels works in fields like biology and spatial economics, suggesting that cities exhibit complex scaling behavior similar to other natural phenomena. This essay elaborates on the theoretical foundations, empirical findings, and implications of urban scaling laws as presented in the paper.

Theoretical Framework

Scaling theory, as applied to urban systems, offers a rigorous methodology for analyzing how urban characteristics vary with size. The authors highlight the inadequacy of simple linear extrapolation, as urban systems are inherently nonlinear. The core concept used is a power-law relationship between a dependent urban variable (YY) and a city's population (NN), expressed as Y=Y0NβY = Y_0 N^{\beta}, where Y0Y_0 is a constant, and β\beta is the scaling exponent. This model, which exhibits scale-invariance, allows for the examination of how cities maintain certain properties across different sizes or scales.

Empirical Observations

The empirical section of the paper categorizes urban variables into three broad families based on their scaling behavior:

  1. Socio-Economic Variables: These variables, including GDP and wage levels, often scale super-linearly with city population (β>1\beta > 1), indicating increasing returns to scale. This suggests that as cities grow, they become wealthier and more innovative per capita, driven largely by enhanced social interactions.
  2. Structure and Infrastructure Variables: These variables include metrics like the total length of streets or the number of infrastructural facilities, generally scaling sub-linearly (β<1\beta < 1). This implies that larger cities can afford to have fewer infrastructures per capita, reflecting economies of scale in resource allocation.
  3. Individual Needs Variables: These scale linearly with city size (β1\beta \approx 1), encompassing essentials like water and energy consumption, which remain proportional regardless of city size.

The authors critically address deviations from these categorizations, noting situations where socio-political factors or urban planning might alter the expected scaling relations.

Implications and Future Directions

The paper suggests that the observed universality in scaling laws might point towards fundamental principles governing urban organization, possibly enabling more systematic urban planning approaches. However, it also raises concern over the variability of scaling exponents depending on city definitions, methodologies, and cultural contexts.

In terms of theoretical implications, urban scaling laws offer a bridge between urban studies and natural sciences, promoting a quantitative approach to city planning and policy-making. There is also an ongoing debate on the analogy between urban scaling and biological scaling laws, though quantitative differences remain.

Criticisms and Open Questions

While the paper recognizes the power of the scaling model, it acknowledges challenges such as the dependency of results on city boundary definitions and the assumption that city population size is the primary determinant of urban properties. Furthermore, the complexity of cities as socio-cultural constructs poses challenges to the idea of a unified scaling theory.

Open questions remain regarding the consistency of urban scaling laws over time and across different geopolitical contexts. Future research could delve into the stability of scaling exponents and explore how cities might evolve to reach optimal scaling efficiencies.

In summary, Ribeiro and Netto's exploration of urban scaling laws provides a crucial quantitative lens for examining the multifaceted behavior of urban systems, highlighting both the utility and complexity of scaling theory in understanding modern cities.