Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear integral extension of PID control with improved convergence of perturbed second-order dynamic systems (2404.02502v2)

Published 3 Apr 2024 in math.OC, cs.SY, and eess.SY

Abstract: Nonlinear extension of the integral part of a standard proportional-integral-derivative (PID) feedback control is proposed for the perturbed second-order systems. For the matched constant perturbations, the global asymptotic stability is shown, while for Lipschitz perturbations an ultimately bounded output error is guaranteed. It is shown that the proposed control is also applicable to second-order systems extended by additional (parasitic) actuator dynamics with low-pass characteristics, thus representing a frequently encountered application case. The proposed nonlinear control is proven to outperform its linear PID counterpart during the settling phase, i.e. at convergence of the residual output error. An experimental case study of the second-order system with an additional actuator dynamics and considerable perturbations is demonstrated to confirm and benchmark the control performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559–576, 2005.
  2. S. Hara, T. Iwasaki, and D. Shiokata, “Robust PID control using generalized KYP synthesis: Direct open-loop shaping in multiple frequency ranges,” IEEE Control Systems Magazine, vol. 26, no. 1, pp. 80–91, 2006.
  3. O. Garpinger, T. Hägglund, and K. J. Åström, “Performance and robustness trade-offs in PID control,” Journal of Process Control, vol. 24, no. 5, pp. 568–577, 2014.
  4. S. Skogestad, “Simple analytic rules for model reduction and PID controller tuning,” Journal of Process Control, vol. 13, no. 4, pp. 291–309, 2003.
  5. A. Bisoffi, M. Da Lio, A. R. Teel, and L. Zaccarian, “Global asymptotic stability of a PID control system with Coulomb friction,” IEEE Transactions on Automatic Control, vol. 63, no. 8, pp. 2654–2661, 2017.
  6. M. Ruderman, “Stick-slip and convergence of feedback-controlled systems with Coulomb friction,” Asian Journal of Control, vol. 24, no. 6, pp. 2877–2887, 2022.
  7. J. Clegg, “A nonlinear integrator for servomechanisms,” Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, vol. 77, no. 1, pp. 41–42, 1958.
  8. R. Beerens, A. Bisoffi, L. Zaccarian, W. Heemels, H. Nijmeijer, and N. van de Wouw, “Reset integral control for improved settling of PID-based motion systems with friction,” Automatica, vol. 107, pp. 483–492, 2019.
  9. O. Beker, C. Hollot, Y. Chait, and H. Han, “Fundamental properties of reset control systems,” Automatica, vol. 40, no. 6, pp. 905–915, 2004.
  10. S. Van Loon, K. Gruntjens, M. F. Heertjes, N. van de Wouw, and W. Heemels, “Frequency-domain tools for stability analysis of reset control systems,” Automatica, vol. 82, pp. 101–108, 2017.
  11. H. Logemann and E. P. Ryan, “Time-varying and adaptive integral control of infinite-dimensional regular linear systems with input nonlinearities,” SIAM Journal on Control and Optimization, vol. 38, no. 4, pp. 1120–1144, 2000.
  12. H. K. Khalil, “Universal integral controllers for minimum-phase nonlinear systems,” IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 490–494, 2000.
  13. Z.-P. Jiang and I. Marcels, “Robust nonlinear integral control,” IEEE Transactions on Automatic Control, vol. 46, no. 8, pp. 1336–1342, 2001.
  14. M. Ruderman, “Motion control with optimal nonlinear damping: from theory to experiment,” Control Engineering Practice, vol. 127, p. 105310, 2022.
  15. A. I. Lur’e and V. N. Postnikov, “On the theory of stability of control systems,” Applied Mathematics and Mechanics, vol. 8, pp. 246–248, 1944.
  16. K. Narendra and R. Goldwyn, “A geometrical criterion for the stability of certain nonlinear nonautonomous systems,” IEEE Transactions on Circuit Theory, vol. 11, no. 3, pp. 406–408, 1964.
  17. I. Sandberg, “A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element,” Bell System Technical Journal, vol. 43, no. 4, pp. 1601–1608, 1964.
  18. A. Levant, “Robust exact differentiation via sliding mode technique,” Automatica, vol. 34, no. 3, pp. 379–384, 1998.
  19. J. Moreno, “Lyapunov function for Levant’s second order differentiator,” in IEEE 51st Conference on Decision and Control (CDC’12), 2012, pp. 6448–6453.

Summary

We haven't generated a summary for this paper yet.