Extended Wannier-Stark ladder and particle-pair Bloch oscillations in dimerized non-Hermitian systems (2404.02399v2)
Abstract: In the Hermitian regime, the Wannier-Stark ladder characterizes the eigenstates of an electron in a periodic potential with an applied static electric field. In this work, we extend this concept to the complex regime for a periodic non-Hermitian system under a linear potential. We show that although the energy levels can be complex, they are still equally spaced by a real Bloch frequency. This ensures single-particle Bloch oscillations with a damping (or growing) rate. The system can also support standard two-particle Bloch oscillations under certain conditions. We propose two types of dimerized non-Hermitian systems to demonstrate our results. In addition, we also propose a scheme to demonstrate the results of electron-pair dynamics in a single-particle 2D $\mathcal{PT}$-symmetric square lattice.
- Felix Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Zeitschrift für Physik 52, 555–600 (1929).
- Gregory H Wannier, Elements of solid state theory (CUP Archive, 1959).
- Gregory H. Wannier, “Wave Functions and Effective Hamiltonian for Bloch Electrons in an Electric Field,” Physical Review 117, 432–439 (1960).
- M Glück, “Wannier–Stark resonances in optical and semiconductor superlattices,” Physics Reports 366, 103–182 (2002).
- Christian Waschke, Hartmut G. Roskos, Ralf Schwedler, Karl Leo, Heinrich Kurz, and Klaus Köhler, “Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice,” Physical Review Letters 70, 3319–3322 (1993).
- Maxime Ben Dahan, Ekkehard Peik, Jakob Reichel, Yvan Castin, and Christophe Salomon, “Bloch Oscillations of Atoms in an Optical Potential,” Physical Review Letters 76, 4508–4511 (1996).
- S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Qian Niu, and M. G. Raizen, “Observation of Atomic Wannier-Stark Ladders in an Accelerating Optical Potential,” Physical Review Letters 76, 4512–4515 (1996).
- B. P. Anderson and M. A. Kasevich, “Macroscopic Quantum Interference from Atomic Tunnel Arrays,” Science 282, 1686–1689 (1998).
- O. Morsch, J. H. Müller, M. Cristiani, D. Ciampini, and E. Arimondo, “Bloch Oscillations and Mean-Field Effects of Bose-Einstein Condensates in 1D Optical Lattices,” Physical Review Letters 87, 140402 (2001).
- R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Physical Review Letters 83, 4756–4759 (1999).
- Helios Sanchis-Alepuz, Yuriy A. Kosevich, and José Sánchez-Dehesa, “Acoustic Analogue of Electronic Bloch Oscillations and Resonant Zener Tunneling in Ultrasonic Superlattices,” Physical Review Letters 98, 134301 (2007).
- Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler, and Hanns-Christoph Nägerl, “Bloch oscillations in the absence of a lattice,” Science 356, 945–948 (2017).
- Ursula B. Hansen, Olav F. Syljuåsen, Jens Jensen, Turi K. Schäffer, Christopher R. Andersen, Martin Boehm, Jose A. Rodriguez-Rivera, Niels B. Christensen, and Kim Lefmann, “Magnetic Bloch oscillations and domain wall dynamics in a near-Ising ferromagnetic chain,” Nature Communications 13 (2022), 10.1038/s41467-022-29854-9.
- S. Longhi, “Bloch Oscillations in Complex Crystals with 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T Symmetry,” Physical Review Letters 103, 123601 (2009).
- S. Longhi, “Exceptional points and Bloch oscillations in non-Hermitian lattices with unidirectional hopping,” EPL (Europhysics Letters) 106, 34001 (2014).
- Stefano Longhi, “Bloch oscillations in non-Hermitian lattices with trajectories in the complex plane,” Physical Review A 92, 042116 (2015).
- E M Graefe, H J Korsch, and A Rush, “Quasiclassical analysis of Bloch oscillations in non-Hermitian tight-binding lattices,” New Journal of Physics 18, 075009 (2016).
- Stefano Longhi, “Non-Hermitian bidirectional robust transport,” Physical Review B 95, 014201 (2017).
- Carl M. Bender and Stefan Boettcher, ‘‘Real Spectra in Non-Hermitian Hamiltonians Having 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T Symmetry,” Physical Review Letters 80, 5243–5246 (1998).
- Ali Mostafazadeh, “ExactPT-symmetry is equivalent to Hermiticity,” Journal of Physics A: Mathematical and General 36, 7081–7091 (2003).
- Ali Mostafazadeh and Ahmet Batal, “Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics,” Journal of Physics A: Mathematical and General 37, 11645–11679 (2004).
- H F Jones, “On pseudo-Hermitian Hamiltonians and their Hermitian counterparts,” Journal of Physics A: Mathematical and General 38, 1741–1746 (2005).
- Carl M. Bender, Stefan Boettcher, and Peter N. Meisinger, “𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric quantum mechanics,” Journal of Mathematical Physics 40, 2201–2229 (1999).
- Patrick Dorey, Clare Dunning, and Roberto Tateo, “Spectral equivalences, Bethe ansatz equations, and reality properties in 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric quantum mechanics,” Journal of Physics A: Mathematical and General 34, 5679–5704 (2001).
- Carl M. Bender, Dorje C. Brody, and Hugh F. Jones, “Complex Extension of Quantum Mechanics,” Physical Review Letters 89, 270401 (2002).
- Carl M Bender, “Making sense of non-Hermitian Hamiltonians,” Reports on Progress in Physics 70, 947–1018 (2007).
- Yuto Ashida, Zongping Gong, and Masahito Ueda, “Non-Hermitian physics,” Advances in Physics 69, 249–435 (2020).
- L. Jin and Z. Song, “Physics counterpart of the 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T non-Hermitian tight-binding chain,” Physical Review A 81, 032109 (2010).
- X. Z. Zhang, L. Jin, and Z. Song, “Perfect state transfer in 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric non-Hermitian networks,” Physical Review A 85, 012106 (2012).
- H. P. Zhang, K. L. Zhang, and Z. Song, “Dynamics of non-Hermitian Floquet Wannier-Stark system,” (2024), arXiv:2401.13286 [quant-ph] .
- K. L. Zhang and Z. Song, “Magnetic bloch oscillations in a non-hermitian quantum ising chain,” (2024), arXiv:2401.17586 [cond-mat.mes-hall] .
- Giacomo Corrielli, Andrea Crespi, Giuseppe Della Valle, Stefano Longhi, and Roberto Osellame, “Fractional Bloch oscillations in photonic lattices,” Nature Communications 4 (2013), 10.1038/ncomms2578.
- Stefano Longhi, “Photonic Bloch oscillations of correlated particles,” Optics Letters 36, 3248 (2011).
- Demetrios N. Christodoulides, Falk Lederer, and Yaron Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).