Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extended Wannier-Stark ladder and particle-pair Bloch oscillations in dimerized non-Hermitian systems (2404.02399v2)

Published 3 Apr 2024 in quant-ph

Abstract: In the Hermitian regime, the Wannier-Stark ladder characterizes the eigenstates of an electron in a periodic potential with an applied static electric field. In this work, we extend this concept to the complex regime for a periodic non-Hermitian system under a linear potential. We show that although the energy levels can be complex, they are still equally spaced by a real Bloch frequency. This ensures single-particle Bloch oscillations with a damping (or growing) rate. The system can also support standard two-particle Bloch oscillations under certain conditions. We propose two types of dimerized non-Hermitian systems to demonstrate our results. In addition, we also propose a scheme to demonstrate the results of electron-pair dynamics in a single-particle 2D $\mathcal{PT}$-symmetric square lattice.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Felix Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Zeitschrift für Physik 52, 555–600 (1929).
  2. Gregory H Wannier, Elements of solid state theory (CUP Archive, 1959).
  3. Gregory H. Wannier, “Wave Functions and Effective Hamiltonian for Bloch Electrons in an Electric Field,” Physical Review 117, 432–439 (1960).
  4. M Glück, “Wannier–Stark resonances in optical and semiconductor superlattices,” Physics Reports 366, 103–182 (2002).
  5. Christian Waschke, Hartmut G. Roskos, Ralf Schwedler, Karl Leo, Heinrich Kurz,  and Klaus Köhler, “Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice,” Physical Review Letters 70, 3319–3322 (1993).
  6. Maxime Ben Dahan, Ekkehard Peik, Jakob Reichel, Yvan Castin,  and Christophe Salomon, “Bloch Oscillations of Atoms in an Optical Potential,” Physical Review Letters 76, 4508–4511 (1996).
  7. S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Qian Niu,  and M. G. Raizen, “Observation of Atomic Wannier-Stark Ladders in an Accelerating Optical Potential,” Physical Review Letters 76, 4512–4515 (1996).
  8. B. P. Anderson and M. A. Kasevich, “Macroscopic Quantum Interference from Atomic Tunnel Arrays,” Science 282, 1686–1689 (1998).
  9. O. Morsch, J. H. Müller, M. Cristiani, D. Ciampini,  and E. Arimondo, “Bloch Oscillations and Mean-Field Effects of Bose-Einstein Condensates in 1D Optical Lattices,” Physical Review Letters 87, 140402 (2001).
  10. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg,  and Y. Silberberg, “Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations,” Physical Review Letters 83, 4756–4759 (1999).
  11. Helios Sanchis-Alepuz, Yuriy A. Kosevich,  and José Sánchez-Dehesa, “Acoustic Analogue of Electronic Bloch Oscillations and Resonant Zener Tunneling in Ultrasonic Superlattices,” Physical Review Letters 98, 134301 (2007).
  12. Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler,  and Hanns-Christoph Nägerl, “Bloch oscillations in the absence of a lattice,” Science 356, 945–948 (2017).
  13. Ursula B. Hansen, Olav F. Syljuåsen, Jens Jensen, Turi K. Schäffer, Christopher R. Andersen, Martin Boehm, Jose A. Rodriguez-Rivera, Niels B. Christensen,  and Kim Lefmann, “Magnetic Bloch oscillations and domain wall dynamics in a near-Ising ferromagnetic chain,” Nature Communications 13 (2022), 10.1038/s41467-022-29854-9.
  14. S. Longhi, “Bloch Oscillations in Complex Crystals with 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T Symmetry,” Physical Review Letters 103, 123601 (2009).
  15. S. Longhi, “Exceptional points and Bloch oscillations in non-Hermitian lattices with unidirectional hopping,” EPL (Europhysics Letters) 106, 34001 (2014).
  16. Stefano Longhi, “Bloch oscillations in non-Hermitian lattices with trajectories in the complex plane,” Physical Review A 92, 042116 (2015).
  17. E M Graefe, H J Korsch,  and A Rush, “Quasiclassical analysis of Bloch oscillations in non-Hermitian tight-binding lattices,” New Journal of Physics 18, 075009 (2016).
  18. Stefano Longhi, “Non-Hermitian bidirectional robust transport,” Physical Review B 95, 014201 (2017).
  19. Carl M. Bender and Stefan Boettcher, ‘‘Real Spectra in Non-Hermitian Hamiltonians Having 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T Symmetry,” Physical Review Letters 80, 5243–5246 (1998).
  20. Ali Mostafazadeh, “ExactPT-symmetry is equivalent to Hermiticity,” Journal of Physics A: Mathematical and General 36, 7081–7091 (2003).
  21. Ali Mostafazadeh and Ahmet Batal, “Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics,” Journal of Physics A: Mathematical and General 37, 11645–11679 (2004).
  22. H F Jones, “On pseudo-Hermitian Hamiltonians and their Hermitian counterparts,” Journal of Physics A: Mathematical and General 38, 1741–1746 (2005).
  23. Carl M. Bender, Stefan Boettcher,  and Peter N. Meisinger, “𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric quantum mechanics,” Journal of Mathematical Physics 40, 2201–2229 (1999).
  24. Patrick Dorey, Clare Dunning,  and Roberto Tateo, “Spectral equivalences, Bethe ansatz equations, and reality properties in 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric quantum mechanics,” Journal of Physics A: Mathematical and General 34, 5679–5704 (2001).
  25. Carl M. Bender, Dorje C. Brody,  and Hugh F. Jones, “Complex Extension of Quantum Mechanics,” Physical Review Letters 89, 270401 (2002).
  26. Carl M Bender, “Making sense of non-Hermitian Hamiltonians,” Reports on Progress in Physics 70, 947–1018 (2007).
  27. Yuto Ashida, Zongping Gong,  and Masahito Ueda, “Non-Hermitian physics,” Advances in Physics 69, 249–435 (2020).
  28. L. Jin and Z. Song, “Physics counterpart of the 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T non-Hermitian tight-binding chain,” Physical Review A 81, 032109 (2010).
  29. X. Z. Zhang, L. Jin,  and Z. Song, “Perfect state transfer in 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric non-Hermitian networks,” Physical Review A 85, 012106 (2012).
  30. H. P. Zhang, K. L. Zhang,  and Z. Song, “Dynamics of non-Hermitian Floquet Wannier-Stark system,”   (2024), arXiv:2401.13286 [quant-ph] .
  31. K. L. Zhang and Z. Song, “Magnetic bloch oscillations in a non-hermitian quantum ising chain,”   (2024), arXiv:2401.17586 [cond-mat.mes-hall] .
  32. Giacomo Corrielli, Andrea Crespi, Giuseppe Della Valle, Stefano Longhi,  and Roberto Osellame, “Fractional Bloch oscillations in photonic lattices,” Nature Communications 4 (2013), 10.1038/ncomms2578.
  33. Stefano Longhi, “Photonic Bloch oscillations of correlated particles,” Optics Letters 36, 3248 (2011).
  34. Demetrios N. Christodoulides, Falk Lederer,  and Yaron Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com