Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Task-priority Intermediated Hierarchical Distributed Policies: Reinforcement Learning of Adaptive Multi-robot Cooperative Transport (2404.02362v1)

Published 2 Apr 2024 in cs.RO

Abstract: Multi-robot cooperative transport is crucial in logistics, housekeeping, and disaster response. However, it poses significant challenges in environments where objects of various weights are mixed and the number of robots and objects varies. This paper presents Task-priority Intermediated Hierarchical Distributed Policies (TIHDP), a multi-agent Reinforcement Learning (RL) framework that addresses these challenges through a hierarchical policy structure. TIHDP consists of three layers: task allocation policy (higher layer), dynamic task priority (intermediate layer), and robot control policy (lower layer). Whereas the dynamic task priority layer can manipulate the priority of any object to be transported by receiving global object information and communicating with other robots, the task allocation and robot control policies are restricted by local observations/actions so that they are not affected by changes in the number of objects and robots. Through simulations and real-robot demonstrations, TIHDP shows promising adaptability and performance of the learned multi-robot cooperative transport, even in environments with varying numbers of robots and objects. Video is available at https://youtu.be/Rmhv5ovj0xM

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. A. Nath, A. AR, and R. Niyogi, “A distributed approach for autonomous cooperative transportation in a dynamic multi-robot environment,” in Proceedings of the 35th Annual ACM Symposium on Applied Computing, ser. SAC ’20.   New York, NY, USA: Association for Computing Machinery, 2020, p. 792–799.
  2. E. Tuci, M. H. M. Alkilabi, and O. Akanyeti, “Cooperative object transport in multi-robot systems: A review of the state-of-the-art,” Frontiers in Robotics and AI, vol. 5, 2018.
  3. H. Qie, D. Shi, T. Shen, X. Xu, Y. Li, and L. Wang, “Joint optimization of multi-uav target assignment and path planning based on multi-agent reinforcement learning,” IEEE Access, vol. 7, pp. 146 264–146 272, 2019.
  4. T. Niwa, K. Shibata, and T. Jimbo, “Multi-agent reinforcement learning and individuality analysis for cooperative transportation with obstacle removal,” in Distributed Autonomous Robotic Systems: 15th International Symposium.   Springer, 2022, pp. 202–213.
  5. C. D. Hsu, H. Jeong, G. J. Pappas, and P. Chaudhari, “Scalable reinforcement learning policies for multi-agent control,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 4785–4791.
  6. K. Shibata, T. Jimbo, T. Odashima, K. Takeshita, and T. Matsubara, “Learning locally, communicating globally: Reinforcement learning of multi-robot task allocation for cooperative transport,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 11 436–11 443, 2023.
  7. L. Liu and D. A. Shell, “Assessing optimal assignment under uncertainty: An interval-based algorithm,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 936–953, 2011.
  8. L. Sabattini, V. Digani, C. Secchi, and C. Fantuzzi, “Optimized simultaneous conflict-free task assignment and path planning for multi-agv systems,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 1083–1088.
  9. R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive environments,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17, 2017, pp. 6382–6393.
  10. K. Shibata, T. Jimbo, and T. Matsubara, “Deep reinforcement learning of event-triggered communication and control for multi-agent cooperative transport,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 8671–8677.
  11. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
  12. O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical reinforcement learning,” in Proceedings of the 32nd International Conference on Neural Information Processing Systems, ser. NIPS’18, 2018, pp. 3307–3317.
  13. C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The surprising effectiveness of ppo in cooperative multi-agent games,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 611–24 624, 2022.
  14. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  15. M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan, R. Singh, Y. Guo, H. Mazhar, A. Mandlekar, B. Babich, G. State, M. Hutter, and A. Garg, “Orbit: A unified simulation framework for interactive robot learning environments,” IEEE Robotics and Automation Letters, vol. 8, no. 6, pp. 3740–3747, 2023.
  16. A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk, K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al., “Dextreme: Transfer of agile in-hand manipulation from simulation to reality,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5977–5984.
  17. V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym: High performance GPU based physics simulation for robot learning,” in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com