Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometrical Heavy Lifting: Yang-Mills, Spin, and Torsion in Dynamical Projective Gravitation (2404.02243v1)

Published 2 Apr 2024 in gr-qc and hep-th

Abstract: Thomas-Whitehead (TW) gravity is a gauge theory of gravitation based on projective geometry. The theory maintains projective symmetry through the TW connection, an affine connection over the volume bundle of the spacetime manifold. TW gravity obtains dynamics through Lovelock expansions in the action while preserving general relativity as a weak field limit. In this paper we clarify the process of lifting tensor and spinor fields from spacetime to the volume bundle and demonstrate that a choice of lifting amounts to a gauge fixing condition. This leads to a natural extension of previous work, where we now realize these prior constructions have been restricted to a particular gauge. In pursuit of generality, we also introduce torsion to the TW connection, leading to new dynamics. In particular, the appearance of torsion induces interaction terms involving gravitational coupling with Yang-Mills fields and Dirac spinors. An explicit realization of this is a geometrically sourced chiral mass term arising from the torsion dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. O. Veblen and B. Hoffmann, Phys. Rev. 36, 810 (1930).
  2. T. Y. Thomas, Proc. of the Nat. Acad. of Sciences of the USA 11, 588 (1925a).
  3. T. Y. Thomas, Proc. of the Nat. Acad. of Sciences of the USA 11, 199 (1925b).
  4. A. Palatini, Rend. Circ. Mat. Palermo 43 (1919).
  5. S. Brensinger and V. G. J. Rodgers, Int. J. Mod. Phys. A33, 1850223 (2019).
  6. C. Roberts, Differential Geometry and its Applications 5, 237 (1995).
  7. J. J. Hebda and C. Roberts, Differential Geometry and Its Applications 8, 87 (1998).
  8. A. Zecca, International Journal of Theoretical Physics 41, 421 (2002).
  9. V. G. J. Rodgers,   (2022), arXiv:2212.08715 [hep-th] .
  10. A. A. Kirillov, Russian Mathematical Surveys 17, 53 (1962).
  11. B. Rai and V. G. J. Rodgers, Nucl. Phys. B341, 119 (1990).
  12. E. Witten, Commun. Math. Phys. 92, 455 (1984).
  13. A. M. Polyakov, Mod. Phys. Lett. A2, 893 (1987).
  14. A. M. Polyakov, Phys. Lett. 103B, 207 (1981).
  15. M. Eastwood, Math. Appl. 144, 41 (2007).
  16. M. Crampin and D. Saunders, Journal of Geometry and Physics 57, 691 (2007).
  17. V. Rodgers, Phys. Lett. B 336, 343 (1994).
  18. I. Damianos, “Metric-affine gravity and cosmology: Aspects of torsion and non-metricity in gravity theories,”  (2019).
  19. D. Iosifidis and E. N. Saridakis, “Metric-affine gravity,” in Modified Gravity and Cosmology: An Update by the CANTATA Network, edited by E. N. Saridakis, R. Lazkoz, V. Salzano, P. V. Moniz, S. Capozziello, J. Beltrán Jiménez, M. De Laurentis,  and G. J. Olmo (Springer International Publishing, 2021).
  20. N. J. Poplawski, arXiv e-prints , arXiv:0710.3982 (2007), arXiv:0710.3982 [gr-qc] .
  21. D. Z. Freedman and A. Van Proeyen, Supergravity (Cambridge University Press, 2012).
  22. P. Collas and D. Klein, arXiv e-prints , arXiv:1809.02764 (2018).
  23. J. Yepez, arXiv e-prints , arXiv:1106.2037 (2011).
  24. M. Adak, Classical and Quantum Gravity - CLASS QUANTUM GRAVITY 29 (2012), 10.1088/0264-9381/29/9/095006.
  25. F. W. Hehl (2012).
  26. T. B. e. a. Bourguignon, Jean-Pierre, Dirac Operators: Yesterday and Today (International Press, 2010).
  27. A. Zecca, Int. J. Theor. Phys. 42, 2905 (2003).
  28. D. Lovelock, J. Math. Phys. 12, 498 (1971).
  29. C. Lanczos, Annals Math. , 842 (1938).
  30. H. F. Westman and T. G. Zlosnik, arXiv e-prints , arXiv:1411.1679 (2014), 10.48550/arXiv.1411.1679, arXiv:1411.1679 [gr-qc] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com