Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DEMO: Dose Exploration, Monitoring, and Optimization Using a Biological Mediator for Clinical Outcomes (2404.02120v1)

Published 2 Apr 2024 in stat.AP and stat.ME

Abstract: Phase 1-2 designs provide a methodological advance over phase 1 designs for dose finding by using both clinical response and toxicity. A phase 1-2 trial still may fail to select a truly optimal dose. because early response is not a perfect surrogate for long term therapeutic success. To address this problem, a generalized phase 1-2 design first uses a phase 1-2 design's components to identify a set of candidate doses, adaptively randomizes patients among the candidates, and after longer follow up selects a dose to maximize long-term success rate. In this paper, we extend this paradigm by proposing a design that exploits an early treatment-related, real-valued biological outcome, such as pharmacodynamic activity or an immunological effect, that may act as a mediator between dose and clinical outcomes, including tumor response, toxicity, and survival time. We assume multivariate dose-outcome models that include effects appearing in causal pathways from dose to the clinical outcomes. Bayesian model selection is used to identify and eliminate biologically inactive doses. At the end of the trial, a therapeutically optimal dose is chosen from the set of doses that are acceptably safe, clinically effective, and biologically active to maximize restricted mean survival time. Results of a simulation study show that the proposed design may provide substantial improvements over designs that ignore the biological variable.

Summary

We haven't generated a summary for this paper yet.