Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variance-Reduced Policy Gradient Approaches for Infinite Horizon Average Reward Markov Decision Processes (2404.02108v1)

Published 2 Apr 2024 in cs.LG

Abstract: We present two Policy Gradient-based methods with general parameterization in the context of infinite horizon average reward Markov Decision Processes. The first approach employs Implicit Gradient Transport for variance reduction, ensuring an expected regret of the order $\tilde{\mathcal{O}}(T{3/5})$. The second approach, rooted in Hessian-based techniques, ensures an expected regret of the order $\tilde{\mathcal{O}}(\sqrt{T})$. These results significantly improve the state of the art of the problem, which achieves a regret of $\tilde{\mathcal{O}}(T{3/4})$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets