Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Massive celestial amplitudes and celestial amplitudes beyond four points (2404.01920v1)

Published 2 Apr 2024 in hep-th

Abstract: We compute scalar three-point celestial amplitudes involving two and three massive scalars. The three-point coefficient of celestial amplitudes with two massive scalars contains a hypergeometric function, and the one with three massive scalars can be represented as a triple Mellin-Barnes integral. Using these three-point celestial amplitudes, we investigate the conformal block expansions of five- and six-point scalar celestial amplitudes in the comb channel. We observe the presence of two-particle operators in the conformal block expansion of five-point celestial amplitudes, which confirms the previous analysis by taking multi-collinear limit. Moreover, we find that there are new three-particle operators in the conformal block expansion of six-point celestial amplitudes. Based on these findings, we conjecture that exchanges of $n$-particle operators can be observed by considering the comb channel conformal block expansion of $(n+3)$-point massless celestial amplitudes. Finally, we show that a new series of operators appears when turning on the mass of the first incoming particle. The leading operator in this series can be interpreted as a two-particle exchange in the OPE of one massive and one massless scalars.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Sabrina Pasterski, Shu-Heng Shao and Andrew Strominger “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere” In Phys. Rev. D 96.6, 2017, pp. 065026 DOI: 10.1103/PhysRevD.96.065026
  2. Ana-Maria Raclariu “Lectures on Celestial Holography”, 2021 arXiv:2107.02075 [hep-th]
  3. Sabrina Pasterski, Monica Pate and Ana-Maria Raclariu “Celestial Holography” In Snowmass 2021, 2021 arXiv:2111.11392 [hep-th]
  4. “Missing corner in the sky: massless three-point celestial amplitudes” In JHEP 04, 2023, pp. 051 DOI: 10.1007/JHEP04(2023)051
  5. Ho Tat Lam and Shu-Heng Shao “Conformal Basis, Optical Theorem, and the Bulk Point Singularity” In Phys. Rev. D 98.2, 2018, pp. 025020 DOI: 10.1103/PhysRevD.98.025020
  6. Lorenzo Iacobacci, Charlotte Sleight and Massimo Taronna “From celestial correlators to AdS, and back” In JHEP 06, 2023, pp. 053 DOI: 10.1007/JHEP06(2023)053
  7. “Conformal block expansion in celestial CFT” In Phys. Rev. D 104.12, 2021, pp. 126033 DOI: 10.1103/PhysRevD.104.126033
  8. “Bulk locality from the celestial amplitude” In SciPost Phys. 12.5, 2022, pp. 176 DOI: 10.21468/SciPostPhys.12.5.176
  9. “Conformal blocks from celestial gluon amplitudes. Part II. Single-valued correlators” In JHEP 11, 2021, pp. 179 DOI: 10.1007/JHEP11(2021)179
  10. “Conformal blocks from celestial gluon amplitudes” In JHEP 05, 2021, pp. 170 DOI: 10.1007/JHEP05(2021)170
  11. “Celestial Yang-Mills amplitudes and D = 4 conformal blocks” In JHEP 09, 2022, pp. 182 DOI: 10.1007/JHEP09(2022)182
  12. “Shadow celestial amplitudes” In JHEP 02, 2023, pp. 017 DOI: 10.1007/JHEP02(2023)017
  13. Chi-Ming Chang, Reiko Liu and Wen-Jie Ma “Split representation in celestial holography”, 2023 arXiv:2311.08736 [hep-th]
  14. Wei Fan “Celestial conformal blocks of massless scalars and analytic continuation of the Appell function F11{}_{1}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT” In JHEP 01, 2024, pp. 145 DOI: 10.1007/JHEP01(2024)145
  15. “w1+∞subscriptw1{\rm w}_{1+\infty}roman_w start_POSTSUBSCRIPT 1 + ∞ end_POSTSUBSCRIPT in 4D Gravitational Scattering”, 2023 arXiv:2312.08597 [hep-th]
  16. Adam Ball, Yangrui Hu and Sabrina Pasterski “Multicollinear singularities in celestial CFT” In JHEP 02, 2024, pp. 219 DOI: 10.1007/JHEP02(2024)219
  17. Alfredo Guevara, Yangrui Hu and Sabrina Pasterski “Multiparticle Contributions to the Celestial OPE”, 2024 arXiv:2402.18798 [hep-th]
  18. Walker Melton, Atul Sharma and Andrew Strominger “Celestial Leaf Amplitudes”, 2023 arXiv:2312.07820 [hep-th]
  19. “A Celestial Dual for MHV Amplitudes”, 2024 arXiv:2403.18896 [hep-th]
  20. “The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products” In Lett. Nuovo Cim. 4S2, 1972, pp. 115–120 DOI: 10.1007/BF02907130
  21. “On the Clebsch-Gordan Expansion for the Lorentz Group in n Dimensions” In Rept. Math. Phys. 9, 1976, pp. 219–246 DOI: 10.1016/0034-4877(76)90057-4
  22. “Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory”, 1977 DOI: 10.1007/BFb0009678
  23. David Simmons-Duffin “Projectors, Shadows, and Conformal Blocks” In JHEP 04, 2014, pp. 146 DOI: 10.1007/JHEP04(2014)146
  24. Denis Karateev, Petr Kravchuk and David Simmons-Duffin “Harmonic Analysis and Mean Field Theory” In JHEP 10, 2019, pp. 217 DOI: 10.1007/JHEP10(2019)217
  25. “Light-ray operators in conformal field theory” In JHEP 11, 2018, pp. 102 DOI: 10.1007/JHEP11(2018)102
  26. “The shadow formalism of Galilean CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT” In JHEP 05, 2023, pp. 224 DOI: 10.1007/JHEP05(2023)224
  27. “Conformal basis for flat space amplitudes” In Phys. Rev. D 96.6, 2017, pp. 065022 DOI: 10.1103/PhysRevD.96.065022
  28. “From global to heavy-light: 5-point conformal blocks” In JHEP 03, 2016, pp. 184 DOI: 10.1007/JHEP03(2016)184
  29. Vladimir Rosenhaus “Multipoint Conformal Blocks in the Comb Channel” In JHEP 02, 2019, pp. 142 DOI: 10.1007/JHEP02(2019)142
  30. Sarthak Parikh “Holographic dual of the five-point conformal block” In JHEP 05, 2019, pp. 051 DOI: 10.1007/JHEP05(2019)051
  31. Vasco Gonçalves, Raul Pereira and Xinan Zhou “20′superscript20′20^{\prime}20 start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Five-Point Function from A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT Supergravity” In JHEP 10, 2019, pp. 247 DOI: 10.1007/JHEP10(2019)247
  32. Christian Baadsgaard Jepsen and Sarthak Parikh “Propagator identities, holographic conformal blocks, and higher-point AdS diagrams” In JHEP 10, 2019, pp. 268 DOI: 10.1007/JHEP10(2019)268
  33. Sarthak Parikh “A multipoint conformal block chain in d𝑑ditalic_d dimensions” In JHEP 05, 2020, pp. 120 DOI: 10.1007/JHEP05(2020)120
  34. Jean-François Fortin, Wenjie Ma and Witold Skiba “Higher-Point Conformal Blocks in the Comb Channel” In JHEP 07, 2020, pp. 213 DOI: 10.1007/JHEP07(2020)213
  35. Jean-François Fortin, Wen-Jie Ma and Witold Skiba “Six-point conformal blocks in the snowflake channel” In JHEP 11, 2020, pp. 147 DOI: 10.1007/JHEP11(2020)147
  36. Tarek Anous and Felix M. Haehl “On the Virasoro six-point identity block and chaos” In JHEP 08.08, 2020, pp. 002 DOI: 10.1007/JHEP08(2020)002
  37. Felix M. Haehl, Alexandre Streicher and Ying Zhao “Six-point functions and collisions in the black hole interior” In JHEP 08, 2021, pp. 134 DOI: 10.1007/JHEP08(2021)134
  38. Jean-François Fortin, Wen-Jie Ma and Witold Skiba “Seven-point conformal blocks in the extended snowflake channel and beyond” In Phys. Rev. D 102.12, 2020, pp. 125007 DOI: 10.1103/PhysRevD.102.125007
  39. “Towards Feynman rules for conformal blocks” In JHEP 01, 2021, pp. 005 DOI: 10.1007/JHEP01(2021)005
  40. Jean-François Fortin, Wen-Jie Ma and Witold Skiba “All global one-and two-dimensional higher-point conformal blocks”, 2020 eprint: arXiv:2009.07674
  41. “From Gaudin Integrable Models to d𝑑ditalic_d-dimensional Multipoint Conformal Blocks” In Phys. Rev. Lett. 126.2, 2021, pp. 021602 DOI: 10.1103/PhysRevLett.126.021602
  42. “Dimensional reduction of higher-point conformal blocks” In JHEP 03, 2021, pp. 187 DOI: 10.1007/JHEP03(2021)187
  43. “Recursion relations for 5-point conformal blocks” In JHEP 10, 2021, pp. 160 DOI: 10.1007/JHEP10(2021)160
  44. “Gaudin models and multipoint conformal blocks: general theory” In JHEP 10, 2021, pp. 139 DOI: 10.1007/JHEP10(2021)139
  45. “Gaudin models and multipoint conformal blocks. Part II. Comb channel vertices in 3D and 4D” In JHEP 11, 2021, pp. 182 DOI: 10.1007/JHEP11(2021)182
  46. “Gaudin models and multipoint conformal blocks III: comb channel coordinates and OPE factorisation” In JHEP 06, 2022, pp. 144 DOI: 10.1007/JHEP06(2022)144
  47. “Feynman Rules for Scalar Conformal Blocks”, 2022 eprint: 2204.08909
  48. “One- and two-dimensional higher-point conformal blocks as free-particle wavefunctions in AdS3⊗msuperscriptsubscriptAdS3tensor-productabsent𝑚{\textrm{AdS}}_{3}^{\otimes m}AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊗ italic_m end_POSTSUPERSCRIPT” In JHEP 01, 2024, pp. 031 DOI: 10.1007/JHEP01(2024)031
  49. “Generalized Functions, Volume 1” Elsevier Science, 2014 URL: https://books.google.com/books?id=dgnjBQAAQBAJ
  50. “Generalized Functions, Volume 2” Elsevier Science, 2013 URL: https://books.google.com/books?id=iMo3BQAAQBAJ
  51. Laura Donnay, Sabrina Pasterski and Andrea Puhm “Asymptotic Symmetries and Celestial CFT” In JHEP 09, 2020, pp. 176 DOI: 10.1007/JHEP09(2020)176
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com